A COMPUTER PROGRAM INCORPORATING PITZER'S EQUATIONS FOR CALCULATION OF GEOCHEMICAL REACTIONS IN BRINES

By L.N. Plummer, D.L. Parkhurst, G.W. Fleming, and S.A. Dunkle

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 88-4153

Reston, Virginia

1988

DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

Chief, Branch of Regional Research, Northeastern Region U.S. Geological Survey 432 National Center 12201 Sunrise Valley Drive Reston, Virginia 22092 Copies of this report can be purchased from:

U.S. Geological Survey
Books and Open-File Reports Section
Federal Center, Bldg. 810
P.O. Box 25425
Lenver, Colorado 80225

Additional copies of the software described in this report are available from:

WATSTORE PROGRAM OFFICE U.S. Geological Survey 437 National Center Reston, VA 22092

CONTENTS

	page
Abstract	1
Introduction	1
Pitzer equations	2
Data base	5
Extensions of the data base	6
Internal consistency of the data base	6
Literature sources of Pitzer interaction parameters	11
Scale convention of activity coefficients	11
Precautions and limitations	14
Numerical method	15
Basic equations	15
Restrictions on the Newton-Raphson approach	17
Scaling the Newton-Raphson results	17
Description of input	18
Title and option line	19
Keywords	21
ELEMENTS	21
SPECIES	22
SOLUTION	23
MINERALS	25
LOOK MIN	27
MEAN GAM	27
TEMP	28
STEPS	28
REACTION	29
NEUTRAL	30
SUMS	31
END	31
Description of PHRQPITZ.DATA file	31
Description of PITZER.DATA file	32

Test problems -		34
1 Speciate	a brine sample and examine effects of changing activity-	
coeffic	ient scale	34
2 Equilib	ration of pure water with a set of minerals accompanied by an	
irrever	sible reaction	59
3 The an	nydrite-gypsum phase boundary in the system NaCl-H ₂ O	
at 25 °	Celsius	75
4 Solubili	ty with incremental temperature variation: halite-water system	83
5 Fresh v	vater-brine mixing in a closed system	98
6 Simulat	ion of reaction path accompanying the evaporation of sea water	120
Program source	code	140
Interactive cons	truction of input files for the computer program	140
Acknowledgme	ıt	141
References		141
Attachments:		
Α	Listing of the file PHRQPITZ.DATA	144
В	Listing of the file PITZER.DATA	149
C	Summary of published Pitzer interaction parameters	154
C.	List of references cited in Attachments C.2, C.3, C.4,	
	and C.6	155
C.	2 Summary of literature values of Pitzer interaction parameters for	
	single salts	164
C.	3 Summary of literature values of Pitzer interaction parameters for	
	mixed-salt solutions	173
C.	4 Temperature dependence of single-salt parameters	181
C.	Summary of analytical expressions for temperature (and pressure)	
	dependence of selected single-salt Pitzer interaction	
	parameters	184
C.	Sources of data in the file PITZER.DATA	189
D	Listing of source code to program PHRQPITZ	194
E	Listing of source code to the interactive input program	
	PITZINPT	261

		F Listing of the file MINERALS.2.DATA read by interactive input program PITZINPT	303
		G Example of use of interactive input program PITZINPT to	
		construct the input file for test problem 3	306
		ILLUSTRATIONS	
Figure	. 1.	Comparison of calculated solubility of nahcolite in aqueous solutions of Na ₂ CO ₃	9
		TABLES	
Table	1.	Temperature dependence of equilibria in program PHRQPITZ	7
	2.	Comparison of two internally consistent sets of Pitzer interaction	
		parameters for the system NaHCO ₃ -Na ₂ CO ₃ -H ₂ O at 25 °Celsius	10
	3.	Sea water in equilibrium with aragonite at a P _{CO2} of 10 ⁻³ atmospheres	
		and 25 °Celsius on two different activity-coefficient scales	12
	4.	Comparison of individual-ion activities using the measured pH	13
	5.	Analytical data for Canadian Shield brine T-93	34
	6.	Line images of input file to test problem 1	35
	7.	Listing of printout from test problem 1	39
	8.	Line images of input file to test problem 2	60
	9.	Listing of printout from test problem 2	62
	10.	Line images of input file to test problem 3	76
	11.	Listing of printout from test problem 3	78
	12.	Line images of input file to test problem 4	84
	13.	Listing of printout from test problem 4	86
	14.	Line images of input file to test problem 5	99
	15.	Listing of printout from test problem 5	101
	16.	Line images of input file to test problem 6	121
	17.	Listing of printout from test problem 6	123

DISKETTES (Back Pocket)

- Diskette containing a machine-readable copy of the PHRQPITZ source code, the files COMMON.BLOCKS, PITZER.DATA, and PHRQPITZ.DATA, and input files to test problems 1-6.
- Diskette containing a machine-readable copy of the source code to the interactive input program PITZINPT, and the files MINERALS.2.DATA and PHRQPITZ.DATA.

A COMPUTER PROGRAM INCORPORATING PITZER'S EQUATIONS FOR CALCULATION OF GEOCHEMICAL REACTIONS IN BRINES¹

L. Niel Plummer, D.L. Parkhurst, G.W. Fleming, and S.A. Dunkle

ABSTRACT

The program named PHRQPITZ is a computer code capable of making geochemical calculations in brines and other electrolyte solutions to high concentrations using the Pitzer virial-coefficient approach for activity-coefficient corrections. Reaction-modeling capabilities include calculation of (1) aqueous speciation and mineral-saturation index, (2) mineral solubility, (3) mixing and titration of aqueous solutions, (4) irreversible reactions and mineral-water mass transfer, and (5) reaction path. The computed results for each aqueous solution include the osmotic coefficient, water activity, mineral saturation indices, mean activity coefficients, total activity coefficients, and scale-dependent values of pH, individual-ion activities and individual-ion activity coefficients. A data base of Pitzer interaction parameters is provided at 25 °C (Celsius) for the system: Na-K-Mg-Ca-H-Cl-SO₄-OH-HCO₃-CO₃-CO₂-H₂O, and extended to include largely untested literature data for Fe(II), Mn(II), Sr, Ba, Li, and Br with provision for calculations at temperatures other than 25 °C. An extensive literature review of published Pitzer interaction parameters for many inorganic salts is given. Also described is an interactive input code for PHRQPITZ called PITZINPT.

INTRODUCTION

PHRQPITZ² is a FORTRAN 77³ computer program that makes geochemical calculations in brines and other electrolyte solutions to high concentrations. PHRQPITZ has been adapted from the U.S. Geological Survey geochemical simulation computer code PHREEQE⁴ of Parkhurst and others (1980) in which the aqueous model of PHREEQE has been replaced with the Pitzer virial coefficient approach (Pitzer, 1973; Pitzer and Mayorga, 1973, 1974; Pitzer and Kim, 1974; Pitzer, 1975). The PHRQPITZ code contains most of the reaction-modeling capabilities of the original PHREEQE code, including calculation of (1) aqueous speciation and mineral-saturation index, (2) mineral solubility, (3) mixing or titration of aqueous solutions, (4) irreversible reactions and mineral-water mass transfer, and (5) reaction path. The computed results for each aqueous solution include the osmotic coefficient, water activity, mineral saturation indices, mean-activity coefficients, total-activity coefficients, and scale-dependent values of pH, individual-ion activities and individual-ion activity coefficients.

The Pitzer treatment of the aqueous model is based largely on the equations as presented by Harvie and Weare (1980) and Harvie and others (1984). An expanded data base of Pitzer interaction parameters is provided that is identical to the partially validated data base of Harvie and others (1984) at 25 °C (Celsius) for the system Na-K-Mg-Ca-H-Cl-SO₄-OH-HCO₃-CO₃-CO₂-H₂O, and extended to include largely untested literature data for Fe(II), Mn(II), Sr, Ba, Li, and Br with provision for calculations at temperatures other than 25 °C. An extensive

¹ Manuscript approved for publication October 5, 1988.

² PH-Redox-eQuilibrium-equations incorporating the PITZer equations.

³ The use of trade names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

⁴ PH-REdox-EQuilibrium-Equations

literature review of published Pitzer interaction parameters for many inorganic salts is also given that may serve as a guide in selection of additional data for inclusion in PHRQPITZ. Some new data for the temperature dependence of mineral equilibrium constants accompanies the additional (untested) data. As with PHREEQE, the aqueous model and thermodynamic data of PHRQPITZ are user-definable and external to the code.

This report also describes an interactive input code for PHRQPITZ called PITZINPT, which is analogous to the PHREEQE input code, PHRQINPT (Fleming and Plummer, 1984). PITZINPT contains the mineral thermodynamic data base taken largely from Harvie and others (1984) and is used interactively to construct input data sets to PHRQPITZ.

Because most modeling aspects of PHRQPITZ are identical to the original PHREEQE treatment, the reader is referred to the PHREEQE documentation (Parkhurst and others, 1980) for background and modeling information. The current report focuses on extensions to the PHREEQE code including documentation of the Pitzer data base, explanation of the Pitzer equations as incorporated in PHRQPITZ, program limitations and instructions for use.

PITZER EQUATIONS

The osmotic coefficient, ϕ , and activity coefficients of the cations, γ_{M} , and anions, γ_{X} , are given by Harvie and Weare, 1980; Harvie and others, 1984),

$$(\phi - 1) = \frac{2}{\left(\sum_{i} m_{i}\right)} - \frac{A^{\phi} I^{3/2}}{1 + b I^{1/2}} + \sum_{c} \sum_{a} m_{c} m_{a} (B^{\phi}_{ca} + ZC_{ca})$$

$$+ \sum_{c < c'} m_{c} m_{c'} \left(\Phi^{\phi}_{cc'} + \sum_{a} m_{a} \psi_{cc'a}\right)$$

$$+ \sum_{a < a'} m_{a} m_{a'} \left(\Phi^{\phi}_{aa'} + \sum_{c} m_{c} \psi_{aa'c}\right)$$
(1)

$$\ln \gamma_{M} = z_{M}^{2} F + \sum_{\alpha} m_{\alpha} (2B_{M\alpha} + ZC_{M\alpha}) + \sum_{c} m_{c} \left(2\Phi_{Mc} + \sum_{\alpha} m_{\alpha} \psi_{Mc\alpha} \right) + \sum_{\alpha \leq \alpha'} \sum_{\alpha'} m_{\alpha} m_{\alpha'} \psi_{\alpha\alpha'M} + |z_{M}| \sum_{c} \sum_{\alpha} m_{c} m_{\alpha} C_{c\alpha} , \qquad (2)$$

and

$$\ln \gamma_{x} = z_{x}^{2} F + \sum_{c} m_{c} (2B_{cx} + ZC_{cx}) + \sum_{a} m_{a} \left(2\Phi_{xa} + \sum_{c} m_{c} \psi_{xac} \right) + \sum_{c} \sum_{c'} m_{c} m_{c'} \psi_{cc'x} + |z_{x}| \sum_{c} \sum_{a} m_{c} m_{a} C_{ca} .$$
 (3)

Equations 1-3 use the notation of Harvie and Weare (1980). In equations 1-3 m_i denotes molality of the *ith* ion (moles per kilogram) where the subscripts M, c, and c' denote cations, and X, a, and a' denote anions. The double summations c<c' and a<a' refer to all pairs of dissimilar cations and anions. The term A^{ϕ} is defined by

$$A^{\phi} = \frac{1}{3} (2\pi N_{o} \rho_{w} / 1000)^{1/2} (e^{2} / DkT)^{3/2} , \qquad (4)$$

where N_0 is Avagadro's number, ρ_w is the density of water, e is the absolute electronic charge, k the Boltzman constant, D the static dielectric constant of pure water and T is temperature in Kelvins. A^{ϕ} then becomes

$$A^{\phi} = 1400684 \left(\frac{\rho_w}{DT}\right)^{3/2} . \tag{5}$$

In PHRQPITZ, values of A^{ϕ} are computed over the temperature range 0-350 °C. The total pressure is taken to be 1 atm. (atmosphere) between 0 and 100 °C and that of the vapor pressure curve for pure water of Haar and others (1984) beyond 100 °C. The dielectric constant of pure water is calculated from Bradley and Pitzer (1979). Values of A^{ϕ} are reported by Bradley and Pitzer (1979) to three significant figures between 0 and 350 °C and are identical to those calculated in PHRQPITZ. Between 0 and 100 °C at 1 atm. total pressure, A^{ϕ} calculated in PHRQPITZ agrees with values calculated by Ananthaswamy and Atkinson (1984) within 0.00004 or better. The computed value of A^{ϕ} from equation 5 in PHRQPITZ at 25 °C is 0.39148, which compares with 0.39145 reported by Ananthaswamy and Atkinson (1984) and 0.391 reported by Bradley and Pitzer (1979). Uncertainties beyond the third significant figure in A^{ϕ} lead to differences in thermodynamic calculations that are beyond the reliability of the parameterization of the model. However, to avoid introducing inconsistency with the Harvie and others (1984) data base, A^{ϕ} is defined to be 0.392 at 25 °C and 1 atm. total pressure in PHRQPITZ (Harvie and Weare, 1980). In their later paper (Harvie and others, 1984) these authors state that A^{ϕ} is 0.39 at 25 °C although calculations with their data base indicate it is consistent with the value 0.392. Because A^{ϕ} is defined to be 0.392 at 25 °C, small inconsistencies in calculations with PHRQPITZ may be observed between results at 25 °C and those very near 25 °C. Uncertainty in the value of A^{ϕ} is often a source of inconsistency in selecting literature data of Pitzer parameters.

The ionic strength, I, is given by

$$I = \frac{1}{2} \sum_{i} m_i z_i^2 \quad , \tag{6}$$

where z_i is the charge of the *ith* ion. Because few ion pairs are considered in the Pitzer treatment, values of ionic strength computed for a given water sample tend to be larger in the Pitzer model than would be calculated using an ion-pairing model.

The term F in equations 2 and 3 is defined by

$$F = -A^{\phi} \left[\frac{\sqrt{I}}{1 + b\sqrt{I}} + \frac{2}{b} \ln\left(1 + b\sqrt{I}\right) \right] + \sum_{c} \sum_{a} m_{c} m_{a} B'_{ca}$$

$$+ \sum_{c < c'} m_{c} m_{c'} \Phi'_{cc'} + \sum_{a < a'} m_{a} m_{a'} \Phi'_{aa'}$$

$$(7)$$

where b is 1.2. The parameters $\beta^{(0)}$, $\beta^{(1)}$, $\beta^{(2)}$, and C^{ϕ} that define the variables B and C are fitted from single-salt data. For any salt containing a monovalent ion

$$B_{MX}^{\phi} = \beta_{MX}^{(0)} + \beta_{MX}^{(1)} e^{-\alpha \sqrt{I}}$$
 (8)

$$B_{MX} = \beta_{MX}^{(0)} + \beta_{MX}^{(1)} g(\alpha \sqrt{I})$$
 (9)

$$B'_{MX} = \beta_{MX}^{(1)} g'(\alpha \sqrt{I}) / I$$
 , (10)

where $\alpha=2$ (Pitzer, 1973). The functions g and g' are

$$g(x) = 2[1 - (1 + x)e^{-x}]/x^{2}$$
 (11)

$$g'(x) = -2 \left[1 - \left(1 + x + \frac{1}{2} x^2 \right) e^{-x} \right] / x^2 , \qquad (12)$$

where $x = \alpha \sqrt{I}$. For 2-2 electrolytes and higher valence types

$$B_{MX}^{\phi} = \beta_{MX}^{(0)} + \beta_{MX}^{(1)} e^{-\alpha_1 \sqrt{I}} + \beta_{MX}^{(2)} e^{-\alpha_2 \sqrt{I}}$$
 (13)

$$B_{MX} = \beta_{MX}^{(0)} + \beta_{MX}^{(1)} g(\alpha_1 \sqrt{I}) + \beta_{MX}^{(2)} g(\alpha_2 \sqrt{I})$$
 (14)

$$B'_{MX} = \beta_{MX}^{(1)} g'(\alpha_1 \sqrt{I}) / I + \beta_{MX}^{(2)} g'(\alpha_2 \sqrt{I}) / I \quad , \tag{15}$$

where, for 2-2 electrolytes, α_1 =1.4 and α_2 =12.0, and for 3-2 and 4-2 electrolytes α_1 =2.0 and α_2 =50. (Pitzer and Silvester, 1978). The other variable used to define the thermodynamic properties of single-salt solutions, C_{MX} , is given by

$$C_{MX} = C_{MX}^{\phi} / (2\sqrt{|z_M z_X|}) \tag{16}$$

and the coefficient to C_{MX}, Z, in equations 1 - 3 is given by

$$Z = \sum_{i} m_i |z_i| . ag{17}$$

The thermodynamic properties of aqueous solutions containing a single salt depend only on the interaction parameters $\beta^{(0)}$, $\beta^{(1)}$, $\beta^{(2)}$, and C^{ϕ} .

The parameters Φ and ψ are determined from aqueous mixtures of two salts. Φ accounts for cation-cation and anion-anion interactions while the parameter ψ is defined for cation-cation-anion and anion-anion-cation interactions. Values of Φ_{ij} are given by

$$\Phi_{ij}^{\phi} = \theta_{ij} + {}^{E}\theta_{ij}(I) + I^{E}\theta_{ij}^{\prime}(I)$$
(18)

$$\Phi_{ij} = \theta_{ij} + {}^{E}\theta_{ij}(I) \tag{19}$$

$$\Phi'_{ij} = {}^{E} \theta'_{ij}(I) \quad , \tag{20}$$

where θ_{ij} is the only adjustable parameter and is defined for each pair of cations and each pair of anions. The terms $^E\theta_{ij}(I)$ and $^E\theta'_{ij}(I)$ account for electrostatic mixing effects of unsymmetrical cation-cation and anion-anion pairs as defined by Pitzer (1975). The higher-order electrostatic terms of equations 18-20 are calculated routinely in PHRQPITZ for all unsymmetrical pairs of cations or unsymmetrical pairs of anions using the Chebyshev approximation to the

integrals $J_0(x)$ and $J_1(x)$ (see Pitzer, 1975; Harvie and Weare, 1980). Test calculations showed, however, little difference from more simplified approximations to $J_0(x)$ and $J_1(x)$ given by Pitzer (1975). Values of ${}^E\theta_{ij}(I)$ and ${}^E\theta'_{ij}(I)$ depend only on ion charge and total ionic strength and are zero when ij cation or anion pairs have the same charge.

Caution should be exercised in using literature values of θ_{ij} (Reardon and Armstrong, 1987). Values of θ_{ij} must be compatible with the same single-salt data ($\beta^{(0)}$, $\beta^{(1)}$, $\beta^{(2)}$, and C^{ϕ}) used in the model and, for use in PHRQPITZ, their determination from mixed-salt solutions must include the higher-order electrostatic terms discussed above. Both types of θ_{ij} are reported in the literature (i.e., determined with and without provision for higher-order electrostatic terms). In PHRQPITZ the higher-order electrostatic terms are always included. This precaution applies to cation or anion pairs such as Ca^{2+} -Na⁺ or SO_4^{2-} -Cl⁻, but not to interactions such as Cl^- -F⁻ or Ca^{2+} -Mg²⁺ where, because of the identical charge, the higher-order electrostatic terms are zero. Values of θ_{ij} given by Pitzer and Mayorga (1974) and Pitzer (1979) do not include the higher-order electrostatic terms for unsymmetrical cation pairs and unsymmetrical anion pairs. The data of Harvie and Weare (1980) and Harvie and others (1984) include the higher-order electrostatic terms. Harvie and Weare (1980) found significant improvement in modeling the system Na-K-Mg-Ca-Cl-SO₄-H₂O when the higher-order electrostatic terms were included.

Values of the parameters ψ_{ijk} are included for all different combinations of two cations and an anion or two anions and a cation. ψ is usually determined from the same two-salt mixture used to define θ_{ij} and is therefore internally consistent with that value of θ_{ij} as well as the individual single-salt interaction parameters.

Harvie and others (1984) have also included a model for calculation of the activity coefficients, γ_N , of neutral species in solution. In the Harvie and others (1984) data base, this calculation applies to the species $CO_2(aq)$, $CaCO_3^\circ$ and $MgCO_3^\circ$. According to Harvie and others (1984), γ_N is calculated from the relation

$$\ln \gamma_N = \sum_c m_c (2\lambda_{nc}) + \sum_a m_a (2\lambda_{na}) , \qquad (21)$$

where λ_{nc} and λ_{na} refer to interactions between neutral species and cations or anions.

DATA BASE

Two data files are required to run PHRQPITZ. The first file, PHRQPITZ.DATA, is analogous to the thermodynamic data base of PHREEQE (though much smaller) and contains data under the keywords ELEMENTS, SPECIES, LOOK MIN and MEAN GAM. The first three of these keywords are identical to their usage in PHREEQE (Parkhurst and others, 1980). The keyword MEAN GAM is used in PHRQPITZ to define the stoichiometries of selected salts for calculation of the mean activity coefficient, γ_{\pm} . The mean activity coefficient is defined

$$\gamma_{*} = \left(\gamma_{+}^{\vee} \gamma_{-}^{\vee}\right)^{\frac{1}{\vee} \cdot \cdot \vee_{-}} , \qquad (22)$$

where γ_+ and γ_- denote total-activity coefficients of cations (+) and anions (-) and ν_+ and ν_- are the stoichiometric coefficients of the cation and anion in the neutral salt.

Equilibrium constants at 25 °C for (1) the formation of OH-, HCO₃-, CO₂*(aq), HSO₄-, CaCO₃°, MgOH+, and MgCO₃°, and (2) dissolution of minerals listed under LOOK MIN in PHRQPITZ.DATA are computed from the free energies given by Harvie and others (1984).

Expressions for the temperature dependence of log K are of the form,

$$\log K = A_1 + A_2 T + A_3 / T + A_4 \log T + A_5 / T^2 \quad , \tag{23}$$

where A₁ - A₅ are constants and T is temperature in Kelvins. The form of equation 23 corresponds to the model for the heat capacity of Maier and Kelly (1932), as used in PHREEQE. Expressions of this form were either taken from the literature or fitted to solubility data reported by Linke (1965). In all cases the A₁ term has been adjusted to agree with the Harvie and others (1984) data base at 25 °C. In some cases the temperature dependence of log K is calculated from the van't Hoff equation using a value of ΔH_r° at 25 °C. No data for the temperature dependence of the equilibrium constant are available for many of the minerals in the PHRQPITZ.DATA file and for these, PHRQPITZ computes the same value of the equilibrium constant at all temperatures. Table 1 summarizes data used to calculate the temperature dependence of the equilibria in PHRQPITZ. Line images of the file PHRQPITZ.DATA are listed in Attachment A. Coding format and description of input variables in PHRQPITZ.DATA are given in a later section of this report under "Description of Input".

The second data file read by PHRQPITZ is named PITZER.DATA and contains values of the interaction parameters to the Pitzer equations including values of $\beta^{(0)}$, $\beta^{(1)}$, $\beta^{(2)}$, C^{ϕ} , θ , λ , ψ , and limited data on the temperature dependence of $\beta^{(0)}$, $\beta^{(1)}$, $\beta^{(2)}$, and C^{ϕ} . The file PITZER.DATA is listed in Attachment B. For the chemical system Na-K-Mg-Ca-H-Cl-SO₄-OH-HCO₃-CO₂-H₂O at 25 °C, the data bases to PHRQPITZ (PHRQPITZ.DATA and PITZER.DATA) are identical to that of Harvie and others (1984), and in verification procedures have reproduced calculations reported in Harvie and others (1984).

Extensions of the Data Base

Extensions beyond the Harvie and others (1984) data base are largely untested and include additions to PITZER.DATA for (1) calculation of the thermodynamic properties of aqueous solutions containing, in addition to the elements considered in the Harvie and others (1984) data base, Fe(II), Mn(II), Sr²⁺, Ba²⁺, Li⁺, and Br⁻; (2) estimation of the temperature dependence of many of the single-salt parameters from selected literature data for the first derivative with respect to temperature; and (3) calculation of the thermodynamic properties of NaCl solutions to approximately 300 °C following the vapor pressure curve of water beyond 100 °C. Except for the NaCl-H₂O system, the PHRQPITZ aqueous model should be checked carefully before applications outside the temperature interval 0 to 60 °C are attempted. Several recent evaluations of the temperature dependence of Pitzer interaction parameters to relatively high temperatures (Pitzer, 1987; Moller, 1988) have not yet been incorporated in the PHRQPITZ data base.

Extensions to PHRQPITZ.DATA beyond that of Harvie and others (1984) include estimates of ΔH_r° for the formation of the aqueous non-master species such as OH-, HCO₃-, MgOH+, etc., and calculation of equilibrium constants for mineral dissolution reactions at temperatures other than 25 °C. Values of ΔH_r° have been taken from the published literature, or, in some cases, calculated from speciation of mineral solubility data as a function of temperature such as from Linke (1965). The temperature dependence of the interaction parameters and ΔH_r° is only partially complete. No data exist for the temperature dependence of the solubility of many minerals included in PHRQPITZ.DATA. In all cases, the data to PHRQPITZ reproduce the Harvie and others (1984) data base at 25 °C. If changes in the temperature-dependence of the Pitzer interaction parameters are made to the file PIT-ZER.DATA, the appropriate mineral equilibrium constants and their temperature dependence will need to be examined in the file PHRQPITZ.DATA for consistency.

Internal Consistency of the Data Base

It is important to stress the need to maintain the internal consistency of the Harvie and others (1984) data base. As an example, consider the solubility of nahcolite in Na₂CO₃ solutions. The results are given in Harvie and others (1984) (see their fig. 7c, p.734). Curve 1 of figure 1 shows the solubility of nahcolite in Na₂CO₃ solutions calculated from PHRQPITZ using the Harvie and others (1984) data base. The results are identical to those of Harvie and others (1984) and, of course, adequately reproduce the original experimental data. We will now examine the consequences of changing the Harvie and others (1984) data base as regards the solubility of nahcolite.

Table 1 -- Temperature dependence of equilibria in program PHRQPITZ [--, no data; °C, degrees Celsius; kcal/mol, kilocalories per mole]

13.997 13.345 10.339 16.677 1.979 3.15111.809 15.419 2.928 2.928 2.928 2.928 11.809 15.419 11.809 15.41			 107.8975 464.1925 -5.3585	;				
13.997 13.34510.339 10.339 16.677 1.979 1.979 1.979 1.979 1.979 1.979 1.1809 15.419 11.809 15.419 11			 107.8975 464.1925 -5.3585	;				
10.339 16.677 1.977 1.979 11.809 15.419 11.809 15.419 11.809 15.419 11.809 15.419 11.809 15.419 11.809 15.419 11.809 15.419 11.809 15.419 81 canite -1.776 8.220 Arcanite -1.776 8.406 17.284 85 84.406 17.284 85 84.406 17.284 85 84.406 17.284 81 81 81 81 81 81 81 81 81 81 81 81 81			107.8975 464.1925 -5.3585	i i	;	!	:	2
10.677 16.677 1.979 1.979 3.151 11.809 15.419 11.809 15.419 2.928 2.928 2.928 2.928 2.928 2.928 2.928 2.928 2.928 2.928 2.928 2.920			464.1925 -5.3585	0.03252849	-5151.79	-38.92561	563713.9	m
1.979 3.151 11.809 15.419 2.928 2.928 2.928 2.928 2.928 2.928 2.928 2.928 2.928 2.928 2.928 2.347 2.347 2.347 2.347 2.347 2.347 2.347 2.347 2.347 2.347 2.347 2.347 2.347 2.346 2.347 2.346 2			.5.3585	.09344813	-26986.16	-165.75951	2248628.9	m
3.15111.809 15.419 2.928 2.928 2.928 2.928 3.152 4.362 Aragonite -4.362 81.200 1.776 81.200 10.884 .85 2504 ² 6420 Bloedite -2.347 10.884 .85 1.6420 Carnallite 4.330 1.083 -9.436 1.881 4.502 6laserite -9.421 6420 Gaylussite -9.421 6420 Gaylussite -5.245 6420 Hexahydrate -1.635				.0183412	557.2461	;	:	4
11.809 15.419 2.928 2.928 Aragonite -4.362 Aragonite -8.220 Arcanite -1.776 Bischofite 4.455 1.2504²- 4.4120 Bloedite -2.347 10.884 .85 2504²- Burkeite -1.772 Calcite -8.406 Carnallite 4.330 Co3²- Carnallite 4.330 Garnallite -1.881 4.203²- 5.420 Gaylussite -9.421 4.203²- 6lauberite -5.245 6lauberite -5.245 6lauberite -5.245 6420 Hexahydrate -1.63511.809 15.419			-1228.806	299440	35512.75	485.818	:	٣
Anhydrite -4.362 Aragonite -8.220 Aragonite -8.220 Arcanite -1.776 24 + 2.5042 + 4H20 Bloedite -2.347 Brucite -10.884 .85 + 2.5042		1 1 1 1 1	:	:	:	:	:	7
Anhydrite -4.362 Aragonite -8.220 Arcanite -1.776 8 ischofite 4.455 124 + 25042 + 4420 Bloedite -2.347 Brucite -10.884 .85 8 calcite -8.406 11 + 6420 Carnallite 4.330 12 + 25042 - Epsomite -17.083 -9.436 7420 Epsomite -1.881 42 - Glaserite -9.421 42 - Glauberite -5.245 6420 Hexahydrate -1.635	_	1 1 1 1	-32.225	:	1093.486	12.72433	:	m
Anhydrite -4.362 Aragonite -8.220 Arcanite -1.776 Bischofite 4.455 25042 + 4H20 Bloedite -2.347 Brucite -10.884 .85 6H20 Calcite -8.406 Carnallite 4.330 Dolomite -17.083 -9.436 Epsomite -1.881 2C032 + 5H20 Gaylussite -9.421 Glaserite -3.803 Glauberite -5.245 Gypsum -4.581 Halite 1.570 Hexahydrate -1.635		1111						
Aragonite -8.220 Arcanite -1.776 Bischofite 4.455 25042 + 4H20 Bloedite -2.347 942 Brucite -10.884 .85 Calcite -10.884 .85 Calcite -1772 Calcite -1772 Calcite -1772 Calcite -1772 Calcite -9.406 Epsomite -1.881 CCO32 + 5H20 Gaylussite -9.421 Glaserite -3.803 Glauberite -5.245 Gypsum -4.581 Halite 1.570 Hexahydrate -1.635		1 1 1	422.950	:	-18431.	-147.708	:	72
Arcanite -1.776 Bischofite 4.455 25042 + 4H20 Bloedite -2.347 Brucite -10.884 .85 6H20 Carnallite 4.330 Calcite -8.406 Calcite -1.772 Calcite -9.406 Carnallite 4.330 Broomite -17.083 -9.436 Epsomite -1.881 CG032 + 5H20 Gaylussite -9.421 Glauberite -5.245 Gypsum -4.581 Halite 1.570 Hexahydrate -1.635		; ;	-171.8607	077993	2903.293	71.595	i	m
Bischofite 4.455 25042- + 4H20 Bloedite -2.347 Brucite -10.884 .85 Burkeite772 Calcite -8.406 Carnallite 4.330 Dolomite -17.083 -9.436 Epsomite -1.881 2C032- + 5H20 Gaylussite -9.421 Glaserite -5.245 Gypsum -4.581 Halite 1.570 Hexahydrate -1.635		:	2.823	;	-1371.2	:	;	2
25042 + 4H20 Bloedite -2.347 Brucite -10.884 .85 642 Calcite -8.406 Calcite -8.406 Calcite -1.772 Calcite -1.772 Calcite -9.426 CCO32 + 5H20 Gaylussite -9.421 Glaserite -3.803 Glauberite -5.245 Gypsum -4.581 Halite 1.570 Hexahydrate -1.635			3.524	;	277.6	:	;	2
Brucite -10.884 .85 Burkeite772 Calcite -8.406 Carnallite 4.330 Dolomite -17.083 -9.436 Epsomite -1.881 CCO3 ² + 5H2O Gaylussite -9.421 Glauberite -5.245 Gypsum -4.581 Halite 1.570 Hexahydrate -1.635	zt.	:	:	:	:	•	•	-
6H20 Carnallite772 Calcite -8.406 Carnallite 4.330 Dolomite -17.083 -9.436 Epsomite -1.881 CCO3 ² + 5H20 Gaylussite -9.421 Glaserite -3.803 Gypsum -4.581 Halite 1.570 Hexahydrate -1.635	772	35	:	;	:	:	•	•
Calcite -8.406 Carnallite 4.330 Dolomite -17.083 -9.436 Epsomite -1.881 CCO ₃ ² + 5H ₂ O Gaylussite -9.421 Glaserite -3.803 Glauberite -5.245 Gypsum -4.581 Halite 1.570 Hexahydrate -1.635		:	;	•	:	:	:	-
6H20 Carnallite 4.330 Dolomite -17.083 -9.436 Epsomite -1.881 2CO3 ² + 5H20 Gaylussite -9.421 Glaserite -3.803 Glauberite -5.245 Gypsum -4.581 Halite 1.570 Hexahydrate -1.635	-8.406	:	-171.8329	077993	2839.319	71.595	;	m
Dolomite -17.083 -9.436 Epsomite -1.881 2C03 ² + 5H ₂ O Gaylussite -9.421 Glaserite -3.803 Glauberite -5.245 Gypsum -4.581 Halite 1.570 Hexahydrate -1.635	4.330	;	:	:	:	:	:	-
Epsomite -1.881 2C03 ² + 5H ₂ O Gaylussite -9.421 Glaserite -3.803 Glauberite -5.245 Gypsum -4.581 Halite 1.570 Hexahydrate -1.635		7.436	;	;	;	:	:	7
2CO ₃ ² + 5H ₂ O Gaylussite -9.421 Glaserite -3.803 Glauberite -5.245 Gypsum -4.581 Halite 1.570 Hexahydrate -1.635	-1.881	:	1.718	;	-1073.	:	:	2
Glauberite -3.803 Glauberite -5.245 Gypsum -4.581 Halite 1.570 Hexahydrate -1.635	-9.421	:	:	;	:	:	:	-
Glauberite -5.245 Gypsum -4.581 Halite 1.570 Hexahydrate -1.635	-3.803	:	;	:	:	;	:	-
Gypsum -4.581 Halite 1.570 Hexahydrate -1.635	-5.245	•	:	:	:	:	ť	-
Halite 1.570 Hexahydrate -1.635	-4.581	;	90.318	:	-4213.	-32.641	:	2
Hexahydrate -1.635	1.570	:	-713.4616	1201241	37302.21	262.4583	-2106915.	7
20.02		;	-62.666	:	1828.	22.187	:	2
KMgClSO4.3H20 = K* + MgK* + Cl* + S04K* + 3H20 Kainite193	-,193	:	:	:	:	:	:	-
$KHCO_3 = K^+ + H^+ + CO_3^{2-}$ Kalicinite -10.058	-10.058	:	:	:	:	:	:	-
$M9504.H_20 = Mg^{2+} + S04^{2-} + H_20$ Kieserite123	123	:	:	:	:	:	:	-
$Na_4Ca(50_4)_3\cdot 2H_20 = 4Na^+ + Ca^2^+ + 350_4^2^- + 2H_20$ Labile Salt -5.672	-5.672	:	:	:	:	:	:	-
$MgSO_4 \cdot 4H_2O = Mg^2 + SO_4^2 \cdot + 4H_2O$ Leonhadite887	887	:	;	:	:	:	:	-

Table 1 -- Temperature dependence of equilibria in program PHRQPITZ (continued) [--, no data; ^OC, degrees Celsius; kcal/mol, kilocalories per mole]

Reaction	Mineral name	log K ^[1] 25 °C	log κ ^[1] ΔΗ ^ρ 25 ος 25 ος (kcal/ mol)	(1)	A2 (T)	A3 (1/T)	A4 (logT)	(1/12)	Source [1]
$K_2Mg(SO_4)_2 \cdot 4H_2O = 2K^+ + Mg^2^+ + 2SO_4^2^- + 4H_2O$	Leonite	-3.979	;	-	:	:	:	:	1
$M9CO_3 = Mg^{2+} + CO_3^{2-}$	Magnesite	-7.834	-6.169	:	:	:	;	;	9
$Na_2SO_4 - 10H_2O = 2Na^+ + SO_4^{2^-} + 10H_2O$	Mirabilite	-1.214	;	-3862.234 -1.19856	-1.19856	93713.54 1577.756	1577.756	;	∞
$K_8H_6(504)7 = 8K^+ 6H^+ 7504^{2-}$	Misenite	-10.806	;	:	;	;	:	:	_
$NaHCO_3 = Na^+ + H^+ + CO_3^2$	Nahcol i te	-10.742	;	;	:	:	:	;	-
$Na_2CO_3 \cdot 10H_2O = 2Na^+ + CO_3^2 + 10H_2O$	Natron	825	:	;	;	:	:	;	_
$MgCO_3 \cdot 3H_2O = Mg^{2+} + CO_3^{2-} + 3H_2O$	Nesquehonite	-5.167	:	:	;	;	;	:	-
$CO_2(9) = CO_2(40)$	PC02	-1.468	:	108.3865	.01985076	-6919.53	.01985076 -6919.53 -40.45154 669365	669365.	3
$MgSO_4 - 5H_2O = Mg^{2+} + SO_4^{2-} + 5H_2O$	Pentahydrite	-1.285	:	;	:	:	•	:	_
$Na_2Ca(CO_3)_2 \cdot 2H_2O = 2Na^+ + Ca^{2+} + 2CO_3^{2-} + 2H_2O$	Pirssonite	-9.234	•	;	:	;	:	:	_
$K_2MgCa_2(SO_4)_4 \cdot 2H_2O = 2K^+ + Mg^2^+ + 2Ca^2^+ + 4SO_4 + 2H_2O$ Polyhalite	Polyhalite	-13.744	:	:	:	:	:	:	_
Ca(OH)2=Ca ²⁺ + 2OH ⁻	Portlandite	-5.190	;	:	:	;	:	;	-
$K_2Mg(SO_4)_2 \cdot 6H_2O = 2K^+ + Mg^2^+ + 2SO_4^2^- + 6H_2O$	Schoeni te	-4.328	;	:	:	:	:	;	-
$KCI = K^+ + CI^-$	Sylvite	.900	;	3.984	:	-919.55	:	;	2
$K_2Ca(SO_4)_2 \cdot H_2O = 2K^+ + Ca^{2+} + 2SO_4^{2-} + H_2O$	Syngenite	-7.448	:	•	:	;	:	į	_
$Na_3H(CO_3)_2 \cdot 2H_2O = 3Na^+ + H^+ + 2CO_3^2 + 2H_2O$	Trona	-11.384	:	:	:	:	•	:	-

[1] References to values of log $K_{\mbox{\scriptsize T}}$:

1. Harvie and others (1984) unless otherwise indicated.
2. Parkhurst and others (1980).
3. Plummer and Busenberg (1982) with A₁ adjusted for consistency with (1).
4. Parkhurst and others (1980) with A₁ Adjusted for consistency with (1).
5. Solubility data from Linke (1965), speciated in PHRQPITZ, log K fitted to analytical expression as f(T) with A₁ adjusted to be consistent with (1).
6. Plummer and others (1976).
7. Halite solubility from Pitzer and others (1984) treated as in 5 (above).
8. Solubility data from Linke (1965) and Plummer and Busenberg (unpub. data, 1987). The revised value of log K at 25 C for mirabilite (-1.214) compares to -1.228 of Harvie and others (1984).

Figure 1 - Comparison of calculated solubility of nahcolite in aqueous solutions of Na₂CO₃ to 2 molal. (1) Calculated using the model of Harvie and others (1984), (2) Parameters β° , β^{1} , and C ϕ of NaHCO₃ changed to those of Sarbar and others (1982), (3) Same as curve 2 but with K_{Nahcolite} changed to be consistent with Sarbar and others (1982), and (4) Same as curve 3 but with θ and ψ for NaHCO₃-Na₂CO₃ mixtures changed to the values of Roy and others (1984) reported for KHCO₃-K₂CO₃ mixtures. Solid points are the experimental data of Hill and Bacon (1927).

The Na⁺-HCO₃⁻ interaction parameters in the Harvie and others (1984) data base were originally taken from Pitzer and Peiper (1980) based on an evaluation of the original electrochemical measurements of Harned and Davis (1943) and Harned and Bonner (1945) in NaHCO₃-NaCl aqueous solutions. Alternatively we have the Pitzer interaction parameters for NaHCO₃ of Sarbar and others (1982) determined from isopiestic measurements of mixed aqueous solutions of NaHCO₃ and Na₂CO₃ at 25 °C. Curve 2 of figure 1 shows the resulting calculated solubility of nahcolite in Na₂CO₃ solutions if the single-salt parameters of NaHCO₃ are arbitrarily changed from those of Pitzer and Peiper (1980) to those of Sarbar and others (1982). Curve 3 of figure 1 retains the Sarbar and others (1982) parameters for NaHCO₃ and equilibrium constant of paheolite to be interpolly consistent with the Sarbar and adjusts the equilibrium constant of nahcolite to be internally consistent with the Sarbar and others (1982) parameters. Still the agreement is poor with the Harvie and others (1984) calculation (and experimental data).

One final adjustment is to change θ and ψ for CO_3^{2-} - HCO_3^{-} - Na^+ interactions. Because no other values of θ and ψ are known for $NaHCO_3-Na_2CO_3$ mixtures, we have substituted values of θ and ψ determined by Roy and others (1984) for $KHCO_3-K_2CO_3-KCI$ aqueous salt mixtures. Curve 4 of figure 1 shows marked improvement, but further adjustments in these parameters are clearly needed to obtain a revised data set for the $NaHCO_3-Na_2CO_3$ system consistent with the data of Sarbar and others (1982).

New values of θ and ψ for CO_3^{2-} - HCO_3^{-} - Na^+ interactions that are internally consistent with the NaHCO₃ data of Sarbar and others (1982) and the known solubility of nahcolite in Na₂CO₃ solutions (Hill and Bacon, 1927) are compared with the Harvie and others (1984) data base in table 2. Both sets of parameters in table 2 will reproduce the experimental data for the solubility of nahcolite in Na₂CO₃ solutions (curve 1, fig. 1). This example demonstrates the need for internal consists of all Pitrus internal consists and the ready strates the need for internal consistency of <u>all</u> Pitzer interaction parameters and thermodynamic data for the given chemical system when changes to the Harvie and others (1984) data base are contemplated.

Table 2. -- Comparison of two internally consistent sets of Pitzer interaction parameters for the system NaHCO₃-Na₂CO₃-H₂O at 25 °Celsius ¹

Harvie and others (1984)	Alternate parameter set
NaHCO ₃ ²	NaHCO ₃ ³
$\beta^{\circ} = 0.0277$	$\beta^{\circ} = -0.04096$
$\beta^1 = .0411$	$\beta^1 = .5062$
$C^{\phi} = 0$	$C^{\phi} = .005250$
Na ₂ CO ₃ ⁴	Na ₂ CO ₃ ⁴
$\beta^{\circ} = .0399$	$\beta^{\circ} = .0399$
$\beta^1 = 1.389$	$\beta^1 = 1.389$
$C^{\phi} = .0044$	$C^{\phi} = .0044$
$\theta_{\text{CO3-HCO3}} =04$	$\theta_{\rm CO3-HCO3} = .111$
$\psi_{\text{Na-CO3-HCO3}} = .002$	$\psi_{\text{Na-CO3-HCO3}} =025$
$Log K_{Nahcolite} = -10.742$	$Log K_{Nahcolite} = -10.696$

¹ A^{ϕ} = .392. Higher-order electrostatic terms included in calculation of θ and ψ.
² Pitzer and Peiper (1980).
³ Sarbar and others (1982).

⁴ Harvie and others (1984).

Literature Sources of Pitzer Interaction Parameters

As an aid to future improvement of the Pitzer data base, and guide to interpretation of uncertainties of model results, a computer search of literature values of single and mixed inorganic salt data was conducted through March, 1988. The results are summarized in Attachment C, where Attachment C.1 lists a bibliography of 131 articles from which the data were selected. Attachment C.2 lists published values found for the single-salt parameters $\beta^{(0)}$, $\beta^{(1)}$, $\beta^{(2)}$, and C^{ϕ} . Attachment C.3 summarizes data for binary salt systems, θ and ψ . The asterisks assigned to values of θ on Attachment C.3 denote parameters for which higher-order electrostatic terms were not included in fitting to experimental data. Because PHRQPITZ automatically includes the higher-order electrostatic terms, these mixed-salt parameters cannot be used in PHRQPITZ without modification of the code. Attachment C.3 also summarizes values of the single-salt parameters used to define the mixed-salt parameters. Values of θ and ϕ from Attachment C.3 should not be used in PHRQPITZ unless they are consistent with the same single-salt parameters found in PITZER.DATA.

Attachment C.4 summarizes published values of the temperature derivative of the single-salt parameters. Additional temperature-dependent data are given in Attachment C.5. Numbers in parentheses on Attachments C.2-C.5 refer to bibliographic citations listed in Attachment C.1. Several advanced formulations of the temperature dependence of single-salt parameters have been proposed for NaCl, CaCl₂, NaOH, KCl, CsCl, HCl, LiCl, MgSO₄, Na₂SO₄, K₂SO₄, MgCl₂, and CaSO₄. Attachment C.5 lists these equations, fitted constants and sources of data. The reader is also referred to the recent papers of Pabalan and Pitzer (1987), Pitzer (1987) and Moller (1988) for additional high temperature data.

PHRQPITZ currently calculates values of the single-salt interaction parameters either using the 25 °C value and its first derivative with respect to temperature, or utilizes an expression of the form given by Silvester and Pitzer (1977) for NaCl (only). For more extensive data on NaCl the reader is referred to Pitzer and others (1984) and Weres and others (1987).

Because of our dependence in PHRQPITZ on the Harvie and others (1984) data base and its extensive origins from Pitzer and Mayorga (1973, 1974), and Pitzer and Kim (1974), Attachments C.2-C.4 are arranged to list single-salt parameters at 25 °C in the order. Harvie and others (1984), Harvie and Weare (1980), followed by Pitzer sources, and then the remaining literature. Attachment C.6 lists the PITZER.DATA file read by PHRQPITZ (see Attachment B) indicating sources of parameters in parentheses keyed to citations given in Attachment C.1.

SCALE CONVENTION OF ACTIVITY COEFFICIENTS

As has long been recognized, individual-ion activities and activity coefficients cannot be measured independently. Equations 2 and 3 are valid only when individual-ion activity coefficients are combined to define properties of neutral combinations of ions such as in the calculation of mean activity coefficients, saturation indices, solubility, etc. Therefore, values of individual-ion activities and activity coefficients have meaning only in a relative sense and individual values depend on a particular choice of scale convention. The subject has received recent attention as applies to interpretation of pH in seawater (Bates, 1975; Bates and Culberson, 1977; Millero, 1979; Millero and Schreiber, 1982; Plummer and Sundquist, 1982; Millero, 1983; Dickson, 1984; Covington, Bates and Durst, 1985).

PHRQPITZ offers two scaling conventions based on the work of Harvie and others (1984). In the first case (IOPT(10)=0, see Description of Input) no scaling is performed and individual-ion activity coefficients are as computed by equations 2 and 3. In the second case, all individual-ion activity coefficients are scaled according to the MacInnes (1919) convention (IOPT(10)=1, see Description of Input). In this case the activity coefficient of Cl is defined to be equal to the mean activity coefficient of KCl in a KCl solution of equivalent ionic strength, $\gamma_{\text{Cl}(\text{Mac})} = \gamma_{\text{tKCl}}$. The scaling factor for the *ith* ion is computed from the term $(\gamma_{\text{Cl}(\text{eqn},3)}/\gamma_{\text{tKCl}})^{z_i}$ and is multiplied through all other individual-ion activity coefficients computed from equations 2 and 3. That is

$$\gamma_{i(Mac)} = \gamma_i (\gamma_{Cl} / \gamma_{*KCl})^{z_i}$$
 (24)

where $\gamma_{i(Mac)}$ is the individual ion activity coefficient of the ith ion converted to the MacInnes scale, γ_i is the activity coefficient of the ion consistent with some other convention, such as equations 2 and 3, γ_{Cl} is the activity coefficient of Cl⁻ according to the alternate convention, γ_{tKCl} is the mean activity coefficient of KCl in a pure KCl solution of equivalent ionic strength and z_i is the charge of the ith ion (+ for cations, - for anions). The activity coefficients could be placed on other scales by substituting for γ_{tKCl} or $\gamma_{Cl}/\gamma_{tKCl}$ in equation 24.

As an example, table 3 compares log values of the molality, activity, and activity coefficient of individual ions computed for sea water in equilibrium with aragonite at 25 °C and a CO₂ partial pressure of 10⁻³ atm. The results are presented for the problem computed on the MacInnes scale and without scaling as given by equations 2 and 3. In the problem, pH was calculated from the given equilibria and is therefore internally consistent with the aqueous model and respective scale. For this particular case, when all individual-ion activity coefficients are consistent with a single scale, the individual-ion molalities are independent of choice of scale, while the computed individual-ion activities and activity coefficients are scale-dependent. For example, the pH of sea water in equilibrium with aragonite at 25 °C and 10⁻³ atm. P_{CO2} (using the Harvie and others (1984) data base) is 7.871 on the MacInnes scale and 7.828 without scaling equations 2 and 3, as shown in table 3.

Table 3. -- Sea water in equilibrium with aragonite at a $P_{\rm CO2}$ of 10^{-3} atmospheres and 25 °Celsius on two different activity-coefficient scales

		MacInnes s	scale		Unscaled	
Species	Log molality	Log activity	Log gamma	Log molality	Log activity	Log gamma
H+	-7.694	-7.871	-0.178	-7.694	-7.828	-0.134
	008	008	.000	008	008	.000
H ₂ O Ca ²⁺	-1.981	-2.795	814	-1.981	-2.708	726
Mg ²⁺	-1.259	-2.034	775	-1.259	-1.946	687
Na+	313	552	239	313	508	195
K+	-1.973	-2.248	274	-1.973	-2.204	230
CI-	246	363	118	246	407	162
CO ₃ ² -	-4.513	-5.424	911	-4.513	-5.512	999
SO ₄ 2-	-1.532	-2.419	887	-1.532	-2.507	975
OH-	-5.938	-6.134	196	-5.938	-6.178	240
HCO ₃ -	-2.781	-2.956	176	-2.781	-3.000	219
H_2CO_3	-4.535	-4.482	.053	-4.535	-4.482	.053
HŠO₄⁻	-8.204	-8.312	108	-8.204	-8.356	152
$CaCO_3$	-5.068	-5.068	.000	-5.068	-5.068	.000
MgOH+	-5.890	-5.980	100	-5.890	-5.936	056
$MgCO_3$	-4.530	-4.530	.000	-4.530	-4.529	.000

Combining the results of table 3 indicates that when different scales are used, which are in themselves internally consistent, all mean quantities such as γ_{\pm} , a_{\pm} , m_{\pm} and other neutral salt combinations such as ion activity products, saturation indices, and therefore solubility, are independent of scale. Clearly then, we will reach the same thermodynamic conclusion for a

given data base regardless of scale when all individual-ion values are internally consistent with a single scale. However, no significance can be assigned to the individual-ion activities, individual-ion activity coefficients and pH in comparing results on differing scales.

The problem of activity-coefficient scale is more important when the <u>measured</u> pH is introduced in geochemical calculations. The measured pH is not likely to be on the same activity-coefficient scale as the aqueous model because the buffers used to define pH are conventional (Bates, 1973). Even if the measured pH were placed on the same scale as the aqueous model, uncertainties in the measurement of pH in brines, such as due to liquid-junction potentials (Bates, 1973; Wescott, 1978) will always introduce inconsistencies. Consequently, it is unlikely that the measured pH will be consistent with the particular scale used for the individual ions.

As an example of this problem, table 4 compares log activities, $\gamma_{\pm CaCQ3}$, $a_{\pm CaCO3}$, $SI_{calcite}$ and log P_{CO2} for two water samples, including the measured pH (courtesy of R. Spencer, written Comm., 1985) from Great Salt Lake, Utah in both scaled and unscaled calculations. When the measured pH is introduced in the speciation calculation, all individual ion and mean properties, including saturation indices, P_{CO2} , etc. are scale dependent. This dependency of thermodynamic properties on scale when the measured pH is used is particularly acute to the carbonate system and other chemical systems where the equilibria depend significantly on pH, but is not likely to be important to calculations involving chloride and sulfate minerals in most natural waters.

Table 4. -- Comparison of individual-ion activities using the measured pH^[1] [--, carbonate alkalinity included in bicarbonate]

Great Salt Lake (Dilute)	Great Salt Lake (Evaporated)
pH = 8.056	pH = 8.26
a _{H2O} = 0.986 Ionic Strength = 0.6712	$a_{H2O} = 0.730$
Ionic Strength = 0.6712	Ionic Strength = 8.5313

Ion	Molality	Log a	ctivity	Ion	Molality	Log a	ctivity
		MacInnes	Unscaled			MacInnes	Unscaled
$\begin{array}{c} \text{Na} \\ \textbf{K} \\ \text{Ca} \\ \textbf{Mg} \\ \text{Cl} \\ \text{SO}_4 \\ \textbf{HCO}_3^{[2]} \\ \text{CO}_3 \end{array}$	0.4651 .0204 .0096 .0170 .3263 .1058 .0010	-0.529 -1.915 -2.862 -2.556 672 -1.899 -3.267 -5.551	-0.521 1.907 -2.845 -2.539 680 -1.916 -3.276 -5.560	Na K Ca Mg Cl SO ₄ HCO ₃ ^[2] CO ₃	6.5204 1.1119 .0011 .0009 5.8484 .8927 .0028	0.613 462 -3.468 -3.183 .955 -1.516 -2.970 -5.049	0.793 282 -3.109 -2.824 .775 -1.876 -3.172 -5.252
7±CaCO3 log a±CaC SI _{Calcite} log Pco ₂	03	.1082 -4.2063 0064 -3.51	.1082 -4.2023 .0014 -3.52	7±CaCO3 log a±CaCO3 SI _{Calcite} log PcO ₂	ı	.1387 -4.2585 1107 -3.29	.1386 -4.1802 .0459 -3.49

^[1] All calculations at 25°C

The problem of inconsistency of the measured pH with the adopted scale is less important at relatively low ionic strengths. For example, for dilute Great Salt Lake (ionic strength = 0.67), the calcite saturation index varies from 0.001 to -0.006 between unscaled and scaled (MacInnes) calculations (table 4.) But at relatively high ionic strengths, such as evaporated Great Salt Lake (ionic strength = 8.53), the inconsistency in pH scale leads to differences in the calculated calcite saturation index of 0.05 to -0.11 between unscaled and scaled (MacInnes)

^[2] Carbonate alkalinity as HCO₃-

calculations (table 4). Therefore, in addition to the relatively formidable task of measuring pH in brines, it is important to recognize the magnitude of error that can result simply from differences in activity-coefficient scale.

PRECAUTIONS AND LIMITATIONS

Because it was adapted from PHREEQE, PHRQPITZ retains some of the limitations of the original code. These are discussed in Parkhurst and others (1980) and reviewed here as they apply to geochemical reactions in brines.

All calculations are made relative to one kilogram (kg) of water. As there is no mass balance for the elements H and O, there is no formal provision for keeping track of the amount of water used in reactions such as hydration and dehydration of solids. This may be a source of error in simulation of the evaporation of brines where many of the minerals precipitated are often hydrated and remove water from solution.

PHRQPITZ retains the original logic of PHREEQE concerning oxidation-reduction reactions, but because an internally-consistent data base of Pitzer interaction parameters for multiple oxidation states is not currently available, geochemical redox reactions may not be attempted in PHRQPITZ. All redox equilibria used with PHREEQE have been removed from the PHRQPITZ data file PHRQPITZ.DATA. If PITZINPT is used interactively to construct input sets to PHRQPITZ, the pe is automatically set to 4.0 and the non-redox option is selected (IOPT(5)=0). Consequently, precautions in Parkhurst and others (1980) concerning possible formation of large amounts of H_2 or O_2 gas outside the stability field of H_2O are not relevant in PHRQPITZ if these guidelines are adhered to.

Many of the original convergence problems of PHREEQE were redox-related. Improvements to the convergence criteria of PHREEQE (noted in the January, 1985 version) have been incorporated in PHRQPITZ. Precautions and comments on the use of ion exchange, and titration/mixing reactions in PHREEQE, and the lack of uniqueness of modeled reaction paths, discussed in Parkhurst and others (1980), also apply to PHRQPITZ.

The activity of water, a_{H2O} , in PHRQPITZ, is computed from the osmotic coefficient, ϕ , given by equation 1, and is

$$\ln \alpha_{H_20} = -\frac{\phi \sum_i m_i}{55.50837} \tag{25}$$

where m_i is the molality of the ith ion in solution and there are 55.50837 moles of water per kg of water. Equation 25 represents a substantial improvement over water activity calculations in PHREEQE and is now determined directly from the Pitzer model.

Other precautions have been discussed earlier as they apply specifically to the Pitzer data base. These include the likelihood of introducing error in calculated mean activities and saturation indices (particularly for carbonates) when the measured pH is on a different activity coefficient scale than the aqueous model, and the need for internal consistency between mixed-salt and single-salt interaction parameters.

The pH problem is particularly important to carbonate calculations in high ionic strength brines and could easily introduce uncertainties of ±0.5 in the saturation index of calcite. Even larger errors in SI may be attributed to uncertainties in the measurement of pH in brines due to, for example, liquid-junction potentials (Bates, 1973; Westcott, 1978).

Although we have extended the Harvie and others (1984) data base to include Fe²⁺, Mn²⁺, Sr²⁺, Ba²⁺, Li⁺, and Br⁻, and limited temperature dependence, the data base has not been validated beyond that of Harvie and others (1984) at 25 °C. Any changes to the single-salt parameters of the Harvie and others (1984) data base will likely require extensive revision of the mixed-salt parameters and mineral free energies. Any new values of the mixed-salt parameters must be internally consistent with the single-salt parameters in the model and include the higher-order electrostatic terms, as discussed above. This requirement has been

followed in previously-discussed extensions to the Harvie and others (1984) data base given in PITZER.DATA, however, further testing is needed for calculations involving Fe²⁺, Mn²⁺, Sr²⁺, Ba²⁺, Li⁺, and Br⁻. Any changes to the mixed-salt parameters, even if consistent with the given single-salt parameters, will likely require changes to the mineral free energies. Because of the lack of Pitzer interaction parameters for aqueous aluminum and silica species, we are unable to make calculations with aluminosilicates in PHRQPITZ.

The temperature range for equilibria in the PHRQPITZ.DATA file is variable and is generally 0 to 60 °C if ΔH_r ° is known. The NaCl system is valid to approximately 350 °C, and the carbonate system is reliable to about 100 °C. The temperature dependence of the solubility of many of the minerals in PHRQPITZ.DATA is not known and large errors could result if calculations are made at temperatures other than 25 °C for these solids. Limited temperature-dependent data for single salt parameters are included in PITZER.DATA. If the sample temperature is outside the interval 0 to 55 °C, PHRQPITZ prints a nonfatal warning.

NUMERICAL METHOD

Much of the structure of PHREEQE is maintained in PHRQPITZ. PHRQPITZ still uses the Newton-Raphson approach to solve a set of algebraic equations by generating successively better estimates of the molalities and activity coefficients of the aqueous species. In effect, the only change in the results of simulations is caused by several new subroutines that calculate the activity coefficients and activity of water using the Pitzer equations. However, several major changes in the mechanics of the calculations have been made in order to deal with the large range of ionic strength for which the Pitzer formulations are applicable. At high ionic strengths, the activity coefficients and the activity of water have more extreme values. Thus, the numerical method has been changed to estimate changes in activity coefficients and the activity of water as part of refining the estimates of the unknowns.

Basic Equations

The most fundamental change from PHREEQE is that the master variables are the molalities of the master species instead of the activities of the master species. The Newton-Raphson equations rely primarily on the total differential of the molality of each aqueous species with respect to the master variables. The following equations define the total differential of an arbitrary aqueous species, m_i:

$$m_i = K_i (\gamma_1 m_1)^{c_{1,i}} (\gamma_2 m_2)^{c_{2,i}} \alpha_{H_2 0}^{c_{H_2 0,i}} / \gamma_i$$
, (26)

where m_i is the molality of the ith aqueous species, m_1 and m_2 are the molalities of the master species in the mass action expression for the aqueous species, K_i is the equilibrium constant for the association reaction, γ is the activity coefficient of a species, c is the stoichiometric coefficient for a master species in the ith species, and a_{H2O} is the activity of water. The total differential is given by

$$dm_{i} = \frac{\partial m_{i}}{\partial \gamma_{1}} d\gamma_{1} + \frac{\partial m_{i}}{\partial m_{1}} dm_{1} + \frac{\partial m_{i}}{\partial \gamma_{2}} d\gamma_{2} + \frac{\partial m_{i}}{\partial m_{2}} dm_{2}$$

$$+ \frac{\partial m_{i}}{\partial \alpha_{H_{2}0}} d\alpha_{H_{2}0} - \frac{\partial m_{i}}{\partial \gamma_{i}} d\gamma_{i} . \qquad (27)$$

An approximation is used at this point to reduce the activity coefficient terms in the equation to a single term which is dependent on ionic strength, I,

$$d\gamma \sim \frac{d\gamma}{dI}dI \quad . \tag{28}$$

The derivative of the activity coefficients with respect to ionic strength is calculated based on the values of the activity coefficient and ionic strength at a given iteration and the values at the last time the Newton-Raphson procedure was used. Thus there is little computational expense in calculating these derivatives. In testing the program with a wide range of salts, this approximation appears to be adequate. The total differential of the molality of an aqueous species then becomes

$$dm_{i} = c_{1,i} m_{i} \frac{dm_{1}}{m_{1}} + c_{2,i} m_{i} \frac{dm_{2}}{m_{2}} + c_{H_{2}0,i} m_{i} \frac{d\alpha_{H_{2}0}}{\alpha_{H_{2}0}} + \left(c_{1,i} m_{i} \frac{1}{\gamma_{1}} \frac{d\gamma_{1}}{dI} + c_{2,i} m_{i} \frac{1}{\gamma_{2}} \frac{d\gamma_{2}}{dI} - m_{i} \frac{1}{\gamma_{i}} \frac{d\gamma_{i}}{dI}\right) dI .$$
(29)

This equation is the building block for the set of simultaneous equations which need to be solved. PHRQPITZ includes simultaneous equations for electroneutrality, mass balance for each element (except hydrogen and oxygen), and mineral mass action. Two equations that estimate the changes in the activity of water and the ionic strength are also included.

Electroneutrality error is defined

$$\sum_{i} z_{i} dm_{i} = E_{elect} \quad , \tag{30}$$

where z_i is the charge of the ith species and E_{elect} is the electrical imbalance calculated from the molalities of the aqueous species at the current iteration.

Mass-balance error is defined

$$\sum_{i} c_{j,i} dm_i = E_{mass(j)} , \qquad (31)$$

where $c_{j,i}$ is the stoichiometric coefficient of the master species j in the ith species, and $E_{mass(j)}$ is the error in the mass balance (the total concentration of the element j in solution minus the total concentration of j calculated from the molalities of the aqueous species at the current iteration).

Mineral mass action error is defined by

$$\sum_{i} c_{p,i} dm_{i} + \left(\sum_{i} c_{p,i} \frac{d\gamma_{i}}{dI}\right) dI = E_{IAP_{p}} , \qquad (32)$$

where $c_{p,j}$ is the stoichiometric coefficient of master species j in the mass action expression for mineral p and $E_{IAP(p)}$ is the error in the saturation state (log K/IAP).

The change in the activity of water is estimated from

$$\sum_{i} DAW dm_{i} - da_{H_{2}0} = 0 \quad , \tag{33}$$

where DAW is the decrease in the activity of water per mole of solute, DAW = $(1 - a_{\rm H2O})/\Sigma m_{\rm i}$, and $d(a_{\rm H2O})$ is the estimate of the change in the activity of water for the iteration. The activity of water is calculated explicitly in the Pitzer equations, so the utility of including this equation is to estimate the effect of the change in the activity of water on the molalities of all of the aqueous species and mineral saturation indices.

The change in the ionic strength is estimated from

$$\frac{1}{2} \sum_{i} z_{i}^{2} dm_{i} - dI = 0 \quad , \tag{34}$$

where dI is the estimated change in the ionic strength for the iteration. Through the approximation stated above (eq. 28), this equation allows for the estimation of the effects of activity coefficients on the molalities of the aqueous species.

All of the equations presented are linear with respect to changes in the master variables: The molalities of the master species, the mass of minerals, ionic strength, and activity of water. The equations are solved simultaneously to find new values for the molalities of the master species.

Restrictions on the Newton-Raphson Approach

Though the Newton-Raphson approach is a very powerful technique for solving nonlinear equations, it is sensitive to poor estimates of the unknowns. Thus, PHRQPITZ applies the Newton-Raphson technique only after the estimates of the unknowns have satisfied certain

At each iteration, the sequence of calculations is as follows:

(1) The molalities of the species are used to calculate activity coefficients,

(2) the molalities of the master species and the activity coefficients are used to calculate the molalities of the aqueous complexes,
(3) the molalities of the master species of the elements are estimated using the

technique described for PHREEQE (Parkhurst and others, 1980), and

(4) the molalities of the aqueous complexes are recalculated.

This sequence of calculations is repeated at least once to ensure that the molalities of the aqueous species are consistent with the activity coefficients and mass action expressions for the aqueous species. The sequence is repeated until the ionic strength has stabilized and the mass balance on the elements is satisfied within 10 percent. After these criteria are met, the Newton-Raphson equations are invoked. Until the electrical balance is less than 1.0 molal and the saturation indices of minerals are less than 0.5, no activity coefficient effects are included in the Newton-Raphson equations.

Scaling the Newton-Raphson Results

The result of solving the simultaneous equations is a vector of additive changes to the master variables. The magnitude of the changes can be extremely large. In these cases the vector is assumed to be in the direction of decreasing the error terms but must be scaled to much smaller values in order to approach the correct solution. Several criteria are used to ensure that the changes in the master variables are relatively small.

The pH is constrained to change less than 0.5 units per iteration. The maximum change in ionic strength is 0.5 molal. The maximum amount of a mineral that can dissolve or precipitate is 0.5 moles per iteration. Precipitation of minerals is limited so that no negative molalities result. These restrictions make the program more reliable over a range of chemical compositions but cause the program to require more iterations to find a solution to the equations.

DESCRIPTION OF INPUT

The user-defined input to PHRQPITZ is nearly identical to that of PHREEQE. Other input pertaining to the data file PITZER.DATA is new and described separately. Here we present the description of input section from Parkhurst and others (1980) which has been modified as needed to pertain to PHRQPITZ.

PHRQPITZ is designed to perform a sequence of simulations in a single computer run. Each simulation consists of two separate problems:

- 1. Process an initial solution or solutions and (or)
- 2. Model a reaction (starting from the initial solution(s)).

Many pathways for a simulation are accessible with a single input file; that is, no program modification should be necessary. Required input begins with a title line followed by a line of selected options. Depending on the options selected, additional data are supplied using various "Keyword" data blocks. A data block consists of a Keyword followed by appropriate data. The Keyword informs the program of the type and format of the data to follow. ELE-MENTS and SPECIES, if they are used, should be the first two data blocks while the other keyword blocks may follow in any order. The keyword END denotes the end of the input data and is required once for each simulation. After the calculations for one simulation are completed, the program starts the data input process again, beginning with a new title and option line.

The general types of reactions that can be simulated are as follows:

- 1. Mixing of two solutions.
- 2. Titrating one solution with a second solution.
- 3. Adding or subtracting a net stoichiometric reaction (changing total concentrations of elements in proportion to a given stoichiometry).
- 4. Adding a net stoichiometric reaction until the phase boundary of a specified mineral is reached.
- 5. Equilibrating with mineral phases (mineral equilibrium can be specified with reaction types 1, 2, 3, 4, or 6 as well). Any condition which can be written in the form

$$\log(K_p) = \sum_i c_{p,i} \log(\alpha_i) ,$$

where a_i is the activity of the *ith* aqueous species, $c_{p,i}$ is the stoichiometric coefficient of the *ith* aqueous species in the *pth* phase, and K_p is the equilibrium constant for the *pth* phase, is considered a mineral phase. This definition of mineral equilibrium includes the following:

- a. Maintaining the aqueous phase in equilibrium with one or more minerals;
- b. Equilibration of a mineral-water system with a gas such as CO₂.
- c. Apparent ion exchange in the sense that a ratio of two aqueous ion activities is kept constant.

Any combination of the above can be included in the MINERALS keyword input provided the Gibbs Phase Rule is not violated.

6. Changing temperature.

These six types of reaction (processes) may be used in various combinations. For example, one could add a net stoichiometric reaction to a starting solution while maintaining mineral equilibrium and increasing temperature.

In each type of reaction, an initial solution must be specified. There are three ways to provide a starting solution for a reaction. (1) The total concentrations of elements (and other necessary information such as pH, and temperature) may be input using the SOLUTION n keyword. n is either 1 or 2 and indicates the number of the array where the solution data will be stored. Any stoichiometric reaction or simple mineral equilibration is performed on solution number 1 alone. Solution number 2 is required only for mixing and titrating. (2) The second method of providing a starting solution for a reaction is to savé the final solution from the reaction step of the previous simulation (provided more than one simulation is made in a run). IOPT(7) is used to specify the solution number into which the final solution of a simulation will be saved. In the subsequent simulation no new solution should be read into that solution number. (3) Finally, if no reaction solution is saved and no new solutions are input, the solutions from the previous simulation remain in memory. Thus, a solution can be input once but can be used as the starting solution for multiple simulations.

One of the principle applications of PHRQPITZ is intended to be simulation of reactions based on observed water analyses, which will generally show an apparent electrical imbalance as a result of analytical errors. Because we use the electrical neutrality criterion in solving for pH, it is important to consider this apparent charge imbalance. Various options are available to achieve charge balance or to maintain a charge imbalance in the computations. Care should be taken in choosing the appropriate option and interpreting the results. Only perfect chemical analyses would produce electrical neutrality in an initial solution. Lacking these the solution may be left electrically unbalanced by setting IOPT(2) = 0. When a reaction is modeled the final calculated solution will have the same electrical imbalance as the initial solution. If IOPT(2) = 1, the pH of the initial solution will be adjusted to produce electrical neutrality in that solution. If the analytics are perfect, this places pH on the same activity coefficient scale as chosen for the aqueous model. It may be that the pH of the initial solution is relatively well known and it is more reasonable to add relatively inert ions like K+ or Cl- to balance the charge. In this case set IOPT(2) = 2, and use the keyword NEUTRAL and associated input to specify K and Cl. The amount of K or Cl added will be listed in the output. One final alternative is to attribute the charge error to the most suspect analysis, e.g. carbon or sodium, or to a constituent known to be present for which one has no analytical data. Again, set IOPT(2) = 2 and use the NEUTRAL input. Lack of charge balance is a meaningful clue to the errors in analyses and a large error probably makes a solution unsuitable for reaction simulation. By using the various options of the program, one can investigate the significance of analytical errors and their effects on reaction simulations.

In the following description of the input, the Fortran format for each line is given. Any Fortran manual will provide a complete explanation of the symbols used in format statements. Format of input data sets is automatically controlled if PITZINPT is used to generate input data sets to PHRQPITZ.

A. Title and option lines.

1. TITLE LINE TITLE

FORMAT (20A4)

Eighty characters of titles or comments.

2. OPTION LINE (IOPT(I), I = 1,10), NSTEPS, NCOMPS, V0

FORMAT (1011,212, 6X, F10.5)

- IOPT(1) = 0, No print of thermodynamic data or coefficients of aqueous species.
 - = 1, Print the aqueous model data (from PHRQPITZ.DATA) once during the entire computer run.
- IOPT(2) = 0, Initial solutions are not to be charge balanced. Reaction solutions maintain the initial charge imbalance.
 - = 1, pH is adjusted in initial solution(s) to obtain charge balance. Caution: Large errors in pH can result from errors in analytical data, such as for water analyses that are not balanced in charge.

- = 2, The total concentration of one of the elements (except H or O) is adjusted to obtain electrical balance. NEUTRAL input is required.
- IOPT(3) = 0, No reactions are modeled. Only the initial solution is solved (speciated).
 - = 1, Solution 1 is <u>mixed</u> (a hypothetical constant volume process) with solution 2 in specified reaction steps. STEPS input and a value of NSTEPS are required. MINERALS input may be included.
 - = 2, Solution 1 is <u>titrated</u> with solution 2 in specified reaction steps. STEPS input, a value for NSTEPS, and a value for V0 are required. MINERALS input may be included.
 - = 3, A stoichiometric <u>reaction is added</u> in specified reaction steps. REACTION input, STEPS input, a value for NSTEPS, and a value for NCOMPS are required. MINERALS input may be included.
 - = 4, A net stoichiometric reaction is added in NSTEPS equal increments. REACTION input, STEPS input, a value of NSTEPS, and a value for NCOMPS are required. MINER-ALS input may be included. Only one value for the total reaction is read in STEPS.
 - = 5, Solution number 1 is equilibrated with mineral phases only. No other reaction is performed. MINERALS input is required.
 - = 6, A reaction is added to solution 1 until equilibrium is attained with the <u>first</u> phase in MINERALS input (equilibrium with other MINERALS phases is maintained throughout the reaction). REACTION input, a value for NCOMPS, and MINERALS input is required. No STEPS input is required. Note: there should be a common element in the reaction and the first phase in MINERALS, unless the phase boundary depends only on the activity of water (such as anhydrite-gypsum) at constant temperature and pressure. To evaporate or dilute solution number 1 to reach a phase boundary, define the REACTION a 1.0 H₂O (See description of REACTION input and Test Problem 6).
- IOPT(4) = 0, The temperature of the reaction solution is (a) the same as the initial solution if adding a reaction, or (b) calculated linearly from the end members if mixing or titrating. No TEMP input is required.
 - = 1, The temperature is constant during the reaction steps and differs from that of the initial solution(s). One value is read in the TEMP input.
 - = 2, The temperature is varied from T_o to T_f in NSTEPS equal increments during the reaction steps. A value for NSTEPS and two values of temperature, T_o and T_f , (in order) are required in the TEMP input, where T_o is the initial temperature and T_f is the final temperature.
 - = 3, The temperature of each reaction step is specified in TEMP input, in order. NSTEPS values are read. Note: If a change in temperature is the sole "reaction", then a (null) stoichiometric reaction adding 0.0 moles must be defined using REACTION and STEPS input (see test problem 4).

- IOPT(5) = 0, The pe of the initial solution (defined to be 4.0 if PIT-ZINPT is used to construct input sets) is held constant during all the reaction steps for the simulation. Redox reactions are currently not considered.
- IOPT(6) = 2, Activity coefficients are calculated according to the Pitzer model. No other options are available.
- IOPT(7) = 0, Do not save the aqueous phase composition at the end of a reaction for additional simulation.
 - = 1, Save the final reaction solution composition in solution number 1.
 - = 2, Save the final reaction solution composition in solution number 2.
- IOPT(8) = 0, The debugging print routine is not called.
 - = 1, A long printout is output at each iteration in each problem. This print is to be used only if there are convergence problems with the program. (See discussion of subroutine PBUG given in Parkhurst and others (1980)).
- IOPT(9) = 0, No printout of each array to be solved.
 - each iteration. This print is used only if there are convergence problems. (See discussion of subroutine SLNQ given in Parkhurst and others (1980)).
- IOPT(10) = 0, No scaling of the individual-ion activity coefficients is performed.
 - = 1, The individual-ion activity coefficients are scaled according to the MacInnes convention (see text).
- NSTEPS

 The number of reaction steps. A value is required if IOPT(3) = 1, 2, 3, or 4, or if IOPT(4) = 2 or 3. (Right justified.)
- NCOMPS

 The number of constituents in a net stoichiometric reaction. A constituent may be any element with an index number between 4 and 29 inclusive. No aqueous species with index numbers greater than 29 may be included as reaction constituents. A value of NCOMPS is required if IOPT(3) = 3, 4, or 6.
- V0 The initial volume of solution 1 when modeling a titration. The unit of V0 must be the same as that of XSTEP (See STEPS input below) if IOPT(3) = 2. Otherwise, V0 is not required.
- B. Keyword data blocks. Blocks are preceded by a keyword line. The keywords are numbered and underlined in the following text. Each keyword must begin in the first column of the line. The appropriate lines, which are lettered in the text, must follow in order directly after the keyword.
 - 1. ELEMENTS FORMAT (A8)

This input defines the names and indices of all elements in the aqueous model data base (PHRQPITZ.DATA). One of line 1.a is read for each element. The index numbers of the elements do not need to be consecutive or sequential. This input block must be terminated with one blank line. Generally these data will be part of the PHRQPITZ.DATA file stored on disk and read by the program at the beginning of each run. Only changes to the data base need to be in the input data file.

1.a. TNAME, NELT, TGFW FORMAT (A8,2X,I2,3X,F10.0)

TNAME Alphanumeric name of the element.

NELT Index number assigned to the element. Number must be between 4 and 29, inclusive. (Right justified.)

TGFW Gram formula weight of the species used to report the analytical data. If solution data include alkalinity, TGFW for the element carbon must be the equivalent weight of the reported alkalinity species. TGFW is not used if the concentrations are entered as molality (IUNITS = 0 in SOLUTION input line 3.b).

1.b. Blank line. (Denotes end of **ELEMENTS** input).

2. SPECIES FORMAT (A8)

This input defines the names, index numbers and composition of all aqueous species in the aqueous model data base. Lines 2.a, 2.b, 2.c, and 2.d are read for each species. The index numbers for the species do not need to be sequential or consecutive. This input block must be terminated with one blank line. To eliminate a species (already in the PHRQPITZ.DATA file) from the aqueous model, only line 2.a followed by a blank line 2.b must be entered. More species changes could then follow or a second blank line would terminate this input block. All species must have association reactions which contain only master species (species numbers less than or equal to 29). Reactions containing non-master species must be converted to master species reactions and the appropriate association constants must be calculated before they can be entered into the program. These data are generally stored in the disk file PHRQPITZ.DATA which is read by the program at the beginning of each run and retained for the entire run. Only changes and additions to PHRQPITZ.DATA would appear in the input file.

2.a I

I

FORMAT (I3)

The index number assigned to the aqueous species. Numbers 4 through 29 are reserved for master species. The maximum index number for an aqueous species is 250. (Right justified.)

2.b. SNAME, NSP, KFLAG, GFLAG, ZSP, THSP, DHA, ADHSP(1), ADHSP(2), ALKSP

FORMAT (A8,2X,I3,2I1,6F10.3)

SNAME Alphanumeric species name.

NSP The total number of master species in the association reaction that forms this species; do not count the species itself unless the species is a master species (index number of 1 - 29). (Right justified.)

KFLAG = 0. The van't Hoff equation is used to calculate the temperature dependence of the association constant for this species.

= 1. An analytical expression is used to calculate temperature dependence of the association constant. Values of ASP are required on line 2.c.

GFLAG Not used in PHROPITZ. Read 0 or blank.

ZSP The charge on this aqueous species.

THSP Not used in PHRQPITZ. Read 0.0, or blank.

DHA Not used in PHRQPITZ. Read 0.0, or blank.

ADHSP(1) Not used in PHRQPITZ. Read 0.0, or blank.

ADHSP(2) Not used in PHRQPITZ. Read 0.0, or blank.

ALKSP The alkalinity in equivalents assigned to this aqueous species. Such as 2.0 for carbonate species and 1.0 for bicarbonate. See discussion in Parkhurst and others (1980).

2.c. LKT0SP, DHSP, (ASP(I),I = 1,5) FORMAT (2F10.3,5E12.5)

Constants used to evaluate the association constant as a function of temperature. The analytical expression has the form of equation 23.

LKT0SP Log₁₀ of the mass action association constant at 25 °C (used in van't Hoff equation).

DHSP Standard enthalpy of the association reaction at 25 °C (ΔH_r°, in Kcal/mole); used in the van't Hoff equation.

ASP(1) Constant term in equation 23 for calculation of the temperature dependence of log K, (= A_1 in equation 3. The array ASP is used if KFLAG = 1.

ASP(2) Coefficient A_2 in equation 23.

ASP(3) Coefficient A_3 in equation 23.

ASP(4) Coefficient A_4 in equation 23.

ASP(5) Coefficient A_5 in equation 23.

2.d. (LSP(I), CSP(I), I = 1,NSP) FORMAT 6(I3,F7.3)

List of <u>master species</u> numbers and their coefficients in the mass action association reaction. NSP pairs of values, LSP and CSP, are read. One and only one of these lines is required for each species.

LSP(I) Index number of master species. (Right justified.)

CSP(I) Stoichiometric coefficient of master species in this aqueous species.

See Parkhurst and others (1980) for further information.

3. <u>SOLUTION</u> n FORMAT (A8,1X,11)

This input is used to define a starting solution. n can be either 1 or 2 and indicates the solution number of the data following. Lines 3.a and 3.b are required. Line 3.c is not included if NTOTS = 0. There must be as many line 3.c's as necessary to read NTOTS total concentrations.

3.a. HEAD

FORMAT (20A4)

Title or comments about the solution.

HEAD Alphanumeric heading

3.b. NTOTS, IALK, IUNITS, PH, PE, TEMP, SDENS FORMAT (I2,I3,I2,3X,4F10.3)

NTOTS

The number of total concentrations to be read from line 3.c input. For example, if the starting solution is a MgCl₂ - NaHCO₃ solution, NTOTS = 4 (for Mg, Cl, Na, and C). (Right justified.)

IALK Flag which indicates whether total carbon or total alkalinity is to be input. (Right justified.)

- = 0 indicates the total concentration of carbon (not alkalinity) is input in the units specified by IUNITS (see below).
- = n 4≤n≤29 where n is the index number for the element carbon, (in PHRQPITZ.DATA, we have defined n = 15) and indicates total alkalinity is being entered. If alkalinity is used (n>0), then IOPT(2) cannot be equal to 1. It is theoretically impossible to use pH to achieve electrical neutrality if the alkalinity is fixed. ELEMENTS input may be required. The units of alkalinity are specified by IUNITS (below) and if IUNITS is greater than 0, the gram formula weight (GFW) of the element carbon is critically important. The GFW in the case of alkalinity must be the gram equivalent weight (grams/equivalent) of the chemical species in which the alkalinity is reported. The following is a list of species commonly used for reporting alkalinity and their corresponding equivalent weights:

 ${\rm CaCO_3}\ 50.0446\ {\rm g/eq}\ {\rm HCO_3}\ {\rm 61.0171\ g/eq}\ {\rm CO_3}\ {\rm 2}\ {\rm 30.0046\ g/eq}.$

(Note that: Alkalinity (mg HCO_3/L) = Alkalinity (mg $CaCO_3/L$) x 1.21925.)

In PHRQPITZ.DATA 44.010 is the GFW of carbon which is suitable for entering carbon as total CO_2 . This <u>GFW must be changed</u> via ELEMENTS input if alkalinity is to be entered as mg/L or ppm (IUNITS = 2 or 3). If IUNITS = 0, alkalinity must be input as eq/kg H_2O and in this case the GFW need not be changed because no conversion of units is necessary. For a discussion of the contribution of different aqueous species to the total alkalinity see Parkhurst and others (1980).

- IUNITS
- Flag describing units of input concentrations (right justified). The program makes all of its calculations in terms of molality and any other allowed concentration unit must be converted internally to molality before the calculations may begin. To make the conversions it is necessary to know the gram formula weight (GFW), in g/mole, of the chemical formula in which the elemental analyses are reported. The GFW is an input parameter under ELEMENTS input and must be in agreement with the analytical units for each solution data set. (If the units are molality, no conversion is necessary and the GFW's are not used.) Values of GFW currently in use are found in PHRQPITZ.DATA. Note: All elements must have the same units. It is not possible to enter mg/L of one element and molality of another.
- = 0 Concentration of elements entered as molality of each element, or for alkalinity, eq/kg H₂O (equivalents per kilogram).
- = 1 Concentration of elements entered as mmol/L of each element, or for alkalinity, meq/L.
- = 2 Concentration of elements entered as mg/L of the species which has a gram formula weight given in ELE-MENTS input. (ELEMENTS input may be required.) For alkalinity see discussion under IALK above.

- = 3 Concentration of elements entered as ppm of the species which has a gram formula weight given in ELEMENTS input. (ELEMENTS input may be required.) For alkalinity see discussion under IALK above.
- = 4 Concentration of elements entered as millimoles per kilogram of solution, or for alkalinity as milliequivalents per kilogram of solution.

PH The pH of the solution (the estimated pH if IOPT(2) = 1). Required for all solutions.

PE The pe of the solution. It is suggested that the user enter 4.0 for this variable, as PHRQPITZ does not currently treat redox reactions.

TEMP The temperature of the solution in °Celsius.

SDENS The density of the solution. Required if concentrations are input in mmol/L or mg/L. If SDENS is omitted, 1.0 is assumed. Incorrect values of SDENS could lead to large errors in converting volume-based concentration units to molality.

3.c. (LT(I), DTOT(I), I = 1, NTOTS) FORMAT 5(I4,D11.3)

Total concentrations of elements. Five values of LT. and DTOT are read on each line. The line may be repeated in order to enter all the elements desired. All data must appear consecutively in the fields, no blanks or zeros are allowed as values for LT. Omit this line if NTOTS is zero, the case of pure water.

LT Index number of the element, consistent with ELEMENTS data in PHRQPITZ.DATA. (Right justified.)

DTOT Total concentration of the element in molality, mmol/L, mg/L, ppm, or mmol/kg solution according to IUNITS.

4. MINERALS FORMAT (A8)

This input defines the phases which will be maintained at equilibrium with each of the reaction solutions. Lines 4.a and 4.b are required for each mineral. Line 4.c is optional for each mineral depending on the value of MFLAG. Unlike SPECIES, MINERALS may be defined in terms of any aqueous species, not just the master species. A maximum of 19 minerals is allowed. The input expression for the equilibrium constant must correspond with the input mass action coefficients. Mineral reactions are written as dissociation reactions. MINERALS input must be terminated with a blank line.

4.a. MNAME, NMINO, THMIN, LKTOM, DHMIN, MFLAG, SIMIN FORMAT (A8,2X,12,3X,3F10.2,5X,11,9X,F10.3)

MNAME Alphanumeric name of mineral.

NMINO Number of different species in the mineral dissociation reaction (including H⁺ and H₂O). NMINO must be less than or equal to 10. (right justified.)

THMIN Not used in PHROPITZ. Read 0.0.

LKT0M Log₁₀ of the equilibrium constant at 25 °C for the reaction.

DHMIN ΔH_r° (Kcal/mole) for the van't Hoff equation.

MFLAG = 0. The van't Hoff equation is used to calculate the temperature dependence of the equilibrium constant.

= 1. The analytical expression is used to calculate the temperature dependence of the equilibrium constant. Line 4.c is required.

SIMIN Saturation index (log₁₀(Ion Activity Product/K_{ap})) desired in the final solution. SIMIN = 0.0 would result in equilibrium with the (one component, or fixed composition) mineral, while 1.0 would produce a solution 10 times supersaturated (SI = 1.0). This variable is also useful in specifying the partial pressure of a gas. The Henry's law constant for the gas would be entered using the equilibrium constant (LKTOM) or analytical expression (AMIN) and the log of the partial pressure would be entered for SIMIN.

4.b. (LMIN(I), CMIN(I), I = 1,NMIN0) FORMAT 5(I4,F11.3)

i.

List of species index numbers and stoichiometric coefficients in the dissociation reaction for this mineral. NMINO pairs of numbers, LMIN and CMIN, are read. The maximum value of NMINO is 10. If NMINO is greater than 5, a second line 4.b is required.

LMIN(I) Index number of species (not necessarily master species) in the dissociation reaction for this mineral. (Right justified.)

CMIN(I) Stoichiometric coefficient of species in dissociation reaction.

For example, using the data for aqueous species index numbers in PHRQPITZ.DATA,

$$CaCO_3 = Ca^{2+} + CO_3^{2-}$$

 $NMIN0 = 2$
 $LMIN(1) = 4$, $CMIN(1) = 1.0$

ii.
$$CaSO_4 \cdot 2H_2O = Ca^{2+} + SO_4^{2-} + 2H_2O$$

NMIN0 = 3
LMIN(1) = 4, CMIN(1) = 1.0

LMIN(1) = 4, CMIN(1) = 1.0 LMIN(2) = 16, CMIN(2) = 1.0 LMIN(3) = 3, CMIN(3) = 2.0.

LMIN(2) = 15, CMIN(2) = 1.0.

iii. Ca²⁺ - Na⁺ ion exchange. (Assumes composition of exchanger does not change.)

or
$$Na_2(ex) + Ca^{2+} = Ca(ex) + 2Na^+$$

 $Na_2(ex) - Ca(ex) = 2Na^+ - Ca^{2+}$

 $LKT0M = a^2_{Na+}/a_{Ca2+}$

iv. Fix CO₂ partial pressure.⁵

$$CO_{2(gas)} = CO_2^*(aq)$$

where CO2*(aq) represents the sum of CO2° and H2CO3°

NMIN0 = 1 LMIN(1) = 35, CMIN(1) = 1.0 LKT0M = Henry's law constant for CO_2 SIMIN = Log P_{CO2} desired.

4.c. AMIN(I), I =1,5 FORMAT (5E12.5)

Equilibrium constant expression of the form of equation 23 for the mineral dissociation reaction. This line is used only if MFLAG = 1.

AMIN(1) Coefficient A_1 of equation 23

AMIN(2) Coefficient A₂ of equation 23

AMIN(3) Coefficient A₃ of equation 23

AMIN(4) Coefficient A₄ of equation 23

AMIN(5) Coefficient A₅ of equation 23

4.d. Blank line.

5. LOOK MIN FORMAT (A8)

The purpose of this input is simply to provide information on the saturation state of the aqueous phase with respect to desired minerals. The minerals in this block of input do not affect the calculations of the initial solution or any of the reaction solutions. This input is never mandatory. The ion activity product (IAP) and saturation index (SI = log (IAP/K)) of each of these minerals is printed in the output following each solution description. Only the minerals which contain elements present in the solution are printed. The input following this line is identical to the input for MINERALS (see above). This input must be terminated with a blank line. The list of "look minerals" is maintained for the duration of the run and any new "look mineral" is simply added to the list. If a "look mineral" is added that has the identical 8 letter name as another mineral in the list, the new mineral replaces the old mineral. The word DELETE as a mineral name will eliminate all of the minerals in the list and new minerals may be added. Only 39 "look minerals" are allowed. LOOK MIN input is generally placed in PHRQPITZ.DATA and is read once for each run. The input file need not contain additions and changes to the PHRQPITZ.DATA list of "look minerals".

6. MEAN GAM FORMAT (A8)

This input allows the user to calculate the mean activity coefficient for any neutral salt combination of aqueous species. The input is optional. Data for calculation of 21 mean activity coefficients are included in PHRQPITZ.DATA. A total of 40 are allowed. MEAN GAM input can appear in the input data set as well as PHRQPITZ.DATA. The word DELETE is allowed and its usage is the same as in LOOK MIN input (see above).

⁵ The reaction is written for the predominant species, CO₂°.

6.a. NMEANG, IMEANG, (LMEANG(I), CMEANG(I), I = 1,3) FORMAT (A8,I2,3(I4,F6.0))

This input defines the stoichiometry of neutral salts for calculation of mean activity coefficients.

NMEANG Alphanumeric name of salt or mineral.

IMEANG Number of different species in the salt. This number is usually 2 and may not exceed 3.

LMEANG(I) Index number of species (not necessarily a master species) in the salt. Index numbers are as defined under ELE-MENTS and SPECIES input.

CMEANG(I) Stoichiometric coefficient of species in salt. For example, using SPECIES data from PHRQPITZ.DATA:

i. NaCl IMEANG = 2 LMEANG(1) = 6, CMEANG(1) = 1.0 LMEANG(2) = 14, CMEANG(2) = 1.0

ii. NaHCO₃
IMEANG = 2
LMEANG(1) = 6, CMEANG(1) = 1.0
LMEANG(2) = 34, CMEANG(2) = 1.0

7. <u>TEMP</u> FORMAT (A8)

This input varies the temperature during the reaction steps. It is required input if IOPT(4) is greater than 0. Only one line 7.a. is necessary unless IOPT(4) = 3. In that case as many lines as necessary to input NSTEPS values are required. If TEMP input is included, REACTION input is required, even for a null reaction (see test problem 4).

7.a. XTEMP FORMAT (8F10.1)

XTEMP Temperature in degrees Celsius.

If IOPT(4)=1, one value of XTEMP is read.

If IOPT(4)=2, two values of XTEMP are read,

T₀ and T_f (in order).

If IOPT(4)=3, NSTEPS values of XTEMP are read

(no blank fields permitted).

8. STEPS FORMAT (A8)

This input defines the steps of the reaction progress. The input has a different meaning depending on the value of IOPT(3) (option line).

IOPT(3) = 1, XSTEP is the fraction of solution 1 to be mixed with solution 2. NSTEPS values are read.

IOPT(3) = 2, XSTEP is the volume of solution 2 to be titrated into solution 1. XSTEP must have the same units as V0 (option line). NSTEPS values are read.

IOPT(3) = 3, XSTEP is the number of moles of reaction to be added to solution 1. NSTEPS values are read.

IOPT(3) = 4, Only one value of XSTEP is read. XSTEP is the total number of moles of reaction to be added in NSTEPS steps. NSTEPS reaction solutions will be calculated. The Ith solution will have I-XSTEP/NSTEPS moles of reaction added to solution 1.

8.a. XSTEP FORMAT (8F10.3)

XSTEP Reaction increments as defined above.

9. <u>REACTION</u> FORMAT (A8)

This input describes the stoichiometry of the elements to be added as a reaction. STEPS input (see above) defines the total number of moles of this reaction to be added. The REACTION input changes the total aqueous concentration of an element by the stoichiometric coefficient (CREAC) times the total moles of reaction (XSTEP). (However, the final total concentration in the reaction solution may also be altered by mass transfer to achieve equilibrium with minerals specified in MINERALS input). It is necessary to consider the charge balance of the reaction which is added. A charge imbalance by an input error, or by intent, is equivalent to adding acid or base. If the reaction is a simulation from a known solution to another known solution, it is possible to add an amount of inert electrical charge equal to the difference in the charge imbalance between the two solutions. In this case, set LREAC(I)=0, CREAC(I)= Δ charge imbalance (equivalents per kilogram H₂O). This will eliminate implicit addition of acid or base. However, to add acid or base intentionally, simply add the anion for an acid (such as Cl- for HCl), or the cation for a base (such as Na+ for NaOH) as a reaction. For the special case of evaporation or dilution to reach a phase boundary, set IOPT(3) = 6, define the phase boundary and appropriate equilibria with MINERALS input and set LREACT(1) = 3, and CREAC(1) = 1.0 (see Test Problem 6). Line 8.a is repeated as often as necessary to read NCOMPS (option line) reaction constituents. REACTION input is required for all changes in temperature, even if no reaction is intended. In this case a null reaction is defined using REACTION and STEPS input (see test problem 4).

9.a. (LREAC(I), CREAC(I), THMEAN(I), I = 1,NCOMPS) FORMAT 4(I4,2F8.3)

This input defines a net stoichiometric reaction. Four triples of numbers are read on each line. Enough lines must be included to read NCOMPS triples of numbers.

LREAC(I) Index number of element for the reaction.

CREAC(I) Stoichiometric coefficient of the element in the reaction.

THMEAN(I) The operational valence of the element in the reaction. Not used in PHRQPITZ. Read 0.0.

The variables which affect a reaction simulation are IOPT(3), NSTEPS, and NCOMPS from the option line, REACTION input and STEPS input. The following examples use the species index numbers from PHROPITZ.DATA.

i. Gypsum is added to the initial solution in 5 equal increments of 0.005 moles, to a total of 0.025 moles. Calcite equilibrium is maintained in each of the five steps.

IOPT(3) = 4 (net reaction linearly added).

NSTEPS = 5 (5 reaction steps)

NCOMPS = 2 (2 constituents, Ca and S)

LREAC(1) = 4, CREAC(1) = 1.0 (Ca)

LREAC(2) = 16, CREAC(2) = 1.0 (S)

MINERALS input, calcite.

XSTEP(1) = 0.025 (total moles of reaction to be added)

The total calcium at the completion of the first reaction step is given by:

$$Ca_{tot} = Ca_{tot(initial)} + 0.005 + MIN_{calcite}$$

ii. Suppose mass balance between two solutions shows calcite, gypsum, and dolomite dissolving (+) and precipitating (-) in proportions of -1:1.5:1. The net reaction is written:

$$-1Ca$$
 $-1C$ = -1 Calcite
+1.5Ca + 1.5S = 1.5 Gypsum
+1Ca + 1Mg + 2C = 1 Dolomite
 $-1.5Ca + 1Mg + 1C + 1.5S = NET$

Three points along this path are modeled by (arbitrarily) adding 10^{-4} , 10^{-3} , and 10^{-2} moles of the net reaction.

IOPT(3) = 3 (add net reaction in specified steps)

NSTEPS = 3 (number of steps)

NCOMPS = 4 (number of constituents in reaction)

LREAC(1) = 4 CREAC(1) = 1.5 (Ca)

LREAC(2) = 5 CREAC(2) = 1.0 (Mg)

LREAC(3) = 15 CREAC(3) = 1.0 (C)

LREAC(4) = 16 CREAC(4) = 1.5 (S)

XSTEP(1) = 10⁻⁴, XSTEP(2) = 10⁻³, XSTEP(3) = 10⁻².

(Note that reaction increments are in moles, reaction progress is always from the defined solution 1 and is not cumulative)

10. NEUTRAL FORMAT (A8)

This input defines the elements to be used to adjust the initial solution(s) to electrical neutrality. One element with a master species cation and one element with a master species anion are input. H⁺ (and e⁻) are not valid entries. A master cation and anion are required in order to add one or the other element according to the charge imbalance. Species are not subtracted, eliminating the possibility of negative total concentrations. This input is required only if IOPT(2) = 2. (Note that this is not equivalent to adding or subtracting charge as discussed in REACTION; remember that IOPT(2) = 0 will maintain an original charge imbalance during a simulation.)

10.a. LPOS, LNEG FORMAT (215)

LPOS Index number of an element with a cation master species. (Right justified.)

LNEG Index number of an element with an anion master species. (Right justified.)

11. SUMS FORMAT (A8)

This input sums molalities of aqueous species which are then printed in the output of the run. These sums do not affect the calculations in any way and are never mandatory. The "sums" are defined by lists of species numbers, so that each time a sequence number for a species is listed, the sum is incremented by the molality of that species. If the species has, for example, two carbonate ions and the total carbonate is the sum which is desired, then the species should be listed twice in that sum. Up to 10 different sums may be defined. Each sum may have up to 50 species. Lines 11.a and 11.b are required for each sum. This input, after all sums have been defined, must be terminated with one blank line.

As in LOOK MIN input, the sums are kept for the duration of the run, but it is possible to add or replace sums or delete the entire set in any single simulation. Any sum input in this data block will be <u>added</u> to the list of sums if the name (SUNAME) is different from all other sum names. A sum with the identical name will <u>replace</u> the sum already in the list. The word DELETE as a sum name will <u>eliminate</u> all the sums known to the computer.

11.a. SUNAME, NSUM FORMAT (A8,2X,I2)

SUNAME Alphanumeric name to be printed to identify the sum.

NSUM The number of index numbers to be read on line(s) 11.b; NSUM cannot exceed 50. (Right justified.)

11.b. (LSUM(I,J), J = 1,NSUM) FORMAT (2014)

List of species numbers to define the sum. Twenty index numbers are read on this line. The line may be repeated as many times as necessary to input NSUM index numbers.

LSUM Index numbers of species in sum. (Right justified.)

Note: repeat lines 11.a and 11.b for each sum.

11.c. Blank line. One blank line at the end of all sums is required to terminate this input.

12. <u>END</u> FORMAT (A8)

This line terminates input operations for a single simulation. Initial solution(s) are computed as directed by the preceding input. Any computer run has at least one END line.

DESCRIPTION OF PHRQPITZ.DATA FILE

The file PHRQPITZ.DATA contains blocks of KEYWORD information described above under "Description of Input". There is no title or option line in PHRQPITZ.DATA. The file begins with appropriate keywords such as ELEMENTS, SPECIES, LOOK MIN, and MEAN GAM, each with its associated input described above. The PHRQPITZ.DATA file (Attachment A) can be modified as needed to define any other aqueous model or chemical system that can be treated by the specific interaction approach. Data entered in PHRQPITZ.DATA are read automatically by PHRQPITZ and need not be included in the user-defined input file.

The PHRQPITZ.DATA file is read once for a given run (which may contain multiple, successive simulations) and remains in effect throughout the run, unless changed by user-defined input. The PHRQPITZ.DATA file may be changed, deleted, or supplemented by inclusion of appropriate keyword blocks and accompanying modifications in the user-defined input set. See "Description of Input" (above) and Parkhurst and others (1980) for further details.

DESCRIPTION OF PITZER.DATA FILE

The file PITZER.DATA contains values of all the interaction parameters for the Pitzer model. The current file used with PHRQPITZ is listed in Attachment B. The Pitzer interaction parameters are defined by equations 1-21. The PITZER.DATA file defines all known interactions for the species included in the PHRQPITZ.DATA file (Attachment A). Interactions may be entered in PITZER.DATA only for species defined with appropriate ELE-MENTS and SPECIES input in PHRQPITZ.DATA. Unknown values of interaction parameters are defined internally in PHRQPITZ as zero and may not be included in PITZER.DATA. Inclusion of zero values for any interaction parameter (except ψ , which is the last block of data read) will result in a read error. Species names used in PITZER.DATA must be exactly as they appear in PHRQPITZ.DATA. The input to PITZER.DATA is defined as follows.

1. SPEC1, IS FORMAT (A8,I3)

SPEC1 Type the word SPECIES for this variable to identify the input that follows. This variable is not used.

IS Total number of individual species in the Pitzer model.

1.a. (NS(I), I = 1,IS)FORMAT 18(1X,I3)

NS Index number assigned to the aqueous species as defined in PHRQPITZ.DATA. IS values are read and may appear in any order. Lines 1.a. are repeated as needed, provided no blank or zero values are read.

- This input type contains all single salt interaction parameters and constants for defining their temperature dependence. The first line of this input requires a zero or blank entry for VALUE(1) in columns 21-32 (see description of input given below). The $\beta^{(0)}$ values must begin on the second line of input and continue for as many non-zero values of $\beta^{(0)}$ as to be defined. The second block of parameters contains values for $\beta^{(1)}$ followed by blocks of values for $\beta^{(2)}$ and then C^{ϕ} . Each of these blocks of parameters must begin with a line containing a blank or zero value for VALUE(1) in columns 21-32. The names B0, B1, B2, and C0 in Attachment B are for identification purposes only and mark lines where zero or blank entries for VALUE(1) are given. The order of data blocks of this type must be $\beta^{(0)}$, $\beta^{(1)}$, $\beta^{(2)}$, and C^{ϕ} . Zero values of the interaction parameters must not be entered unless to denote the beginning of a new data block.
 - 2.a SPEC1, SPEC2, (VALUE(I), I = 1,5) FORMAT 2(2X,A8),5(1X,F11.0)

SPEC1 Name of the ith species exactly as used in PHRQPITZ.DATA for a particular ij cation-anion or anion-cation interaction.

SPEC2 Name of the jth species exactly as used in PHRQPITZ.DATA for a particular ij cation-anion or anion-cation interaction.

VALUE(I) Coefficients for the temperature dependence of the pth single-salt interaction parameter in the form

$$P_{ij} = c_1 + c_2 \left(\frac{1}{T} - \frac{1}{T_R}\right) + c_3 \ln\left(\frac{T}{T_R}\right) + c_4 (T - T_R) + c_5 (T^2 - T_R^2)$$

where $T_R=298.15$, T is temperature in °K and c_1-c_5 are read as VALUE(1), I=1,5. VALUE(1) (= c_1) contains the value of the interaction parameter at the reference temperature. In many cases we only know the first derivative of an interaction parameter with respect to temperature and this then appears in VALUE(4) (= c_4).

Subsequent data blocks contain values of θ , λ , and ψ and, as before, each of these blocks begins with a zero or blank entry for the interaction parameter in VALUE(1). The order of these data blocks must appear as θ , λ , and ψ . Zero or blank values for a given interaction are never required and are not permitted for θ and λ data blocks.

- 3. Input format for θ_{ij} and λ_{ij} . The subscripts ij refer to dissimilar cation-cation or anion-anion pairs for θ_{ij} and ion-neutral species interactions for λ_{ij} . PHRQPITZ does not treat θ , λ and ψ as functions of temperature. The Block of parameters for θ must precede the block for λ . Each block begins with a blank or zero value for VALUE(1).
 - 3.a SPEC1, SPEC2, VALUE(1) FORMAT 2(2X,A8),1X,F11.0

SPEC1 Name of ith species exactly as used in PHRQPITZ.DATA for a particular ij interaction.

SPEC2 Name of jth species exactly as used in PHRQPITZ.DATA for a particular ij interaction.

VALUE(1) Value of the parameter at 25 °C. Read a zero or blank entry for VALUE(1) for the first line of each block of input. Caution: as discussed in the text, θ_{ij} values must be internally consistent with the ψ_{ijk} values, higher-order electrostatic terms and the single salt interaction parameters.

- 4. This data block contains entries for ψ_{ijk} , where ijk refer to dissimilar cation-cation-anion and anion-anion-cation interactions. The first line of data must contain a blank or zero entry for VALUE(1). Zero values of ψ are permitted elsewhere in this block but are not required.
 - 4.a SPEC1, SPEC2, SPEC3, VALUE(1) FORMAT 3(2X,A8),2X,F10.0

SPEC1 Name of the ith species exactly as used in PHRQPITZ.DATA for the particular ijk interaction.

SPEC2 Name of the jth species exactly as used in PHRQPITZ.DATA for the particular ijk interaction.

SPEC3 Name of the kth species exactly as used in PHRQPITZ.DATA for the particular ijk interaction.

VALUE(1) Value of ψ_{ijk} at 25 °C. Caution: values of ψ_{ijk} must be internally consistent with values of θ_{ij} , higher-order electrostatic terms, and the single-salt parameters (see text).

The final line of the file PITZER.DATA is the last entry of ψ_{ijk} .

TEST PROBLEMS

The test problems that follow are designed to illustrate ways of setting up input sets for a wide range of problems that can be considered by PHRQPITZ. The problems also serve as a basis of comparison when transporting the code to other machines. For each problem the input set is given along with the printed output and a brief explanation. An example illustrating how to make temporary changes to the thermodynamic data base is given elsewhere (Parkhurst and others, 1980).

Test problem 1: Speciate a brine sample and examine effects of changing activity-coefficient scale.

This problem demonstrates how to speciate a brine solution for purposes of calculating mineral-water saturation state, activity coefficients, etc. The brine analysis is sample T-93 taken from Frape and others (1984) and is listed in table 5.

Table 5	Analytical data for Canadian Shield
	brine $T-93 \text{ (mg/L)}^{[1]}$

Input #	Parameter	Value	
	Temperature °C	18.0	
	рН	5.00	
	Density	1.204	
4	Calcium	64,000.	
5	Magnesium	5,100.	
6	Sodium	45,000.	
7	Potassium	199.	
12	Strontium	1,080.	
14	Chloride	207,000.	
15	Alkalinity (HCO ₃ -)	19. ´	
16	Sulfate	284.	
22	Bromide	1,760.	

^[1]From Frape and others (1984). Reported silica (4.80 mg/L SiO₂) not included.

In addition to examining the speciation calculation, this test problem demonstrates the significance of uncertainties in activity-coefficient scale on the predicted saturation state, particularly as they apply to the carbonate system. The problem is in 4 parts. In parts 1a and 1b the analysis of table 5 is speciated on the MacInnes scale, and unscaled, respectively, using the measured pH. Parts 1c and 1d attempt to resolve uncertainties in the carbonate system by assuming the water of table 5 is in equilibrium with calcite, on the MacInnes scale and unscaled, respectively. This procedure is preferable to alternate means of defining pH, such as through charge balance (using IOPT(2) = 1) owing to uncertainties in the analytical data. However, as we shall see, the analytical data are insufficient to fully resolve uncertainties in the carbonate system due to activity-coefficient scale.

The input data set for all four parts is listed in table 6. In all cases, the starting solution is as given in table 5, and IOPT(2) = 0 which retains the analytical charge imbalance (-0.30305 eq/kg H₂O) throughout the calculations. Consequently, it is not necessary to adjust the initial solution composition to obtain charge balance. Because total inorganic carbon is calculated from pH and alkalinity, it is theoretically impossible to adjust pH to obtain charge balance. In parts 1a and 1b IOPT(3) = 0 which indicates that SOLUTION 1 will be speciated only. IOPT(3) is 6 in parts 1c and 1d indicating that after speciation, an irreversible reaction will be added (or removed) to solution 1 to obtain equilibrium with one or more minerals. IOPT(6) is set to 2 indicating that the Pitzer equations will be used (no other choices are currently available). In parts 1a and 1c IOPT(10) is 1 which causes all activity coefficients to be scaled according to the MacInnes convention. IOPT(10) is 0 in parts 1b and 1d for unscaled activity

roblem l	

```
Test Problem 1a: Canadian Shield Brine T-93; Frape et al., 1984, Alk+Mac Scale
0000020001 0 0
                     0.0
ELEMENTS
          15
               61.0171
SOLUTION 1
Canadian Shield Brine T-93.
 9 15 2 5.
                      4.0
                               18.
                                         1.204
   464000.
                  645000.
                                  55100.
                                                               121080.
                                                 7199.
  14207000.
                                 16284.
                 221760.
                                                1519.
Test Problem 1b: Canadian Shield Brine T-93; Frape et al., 1984, Alk + No scale
0000020000 0 0
                     0.0
ELEMENTS
C
          15
               61,0171
SOLUTION 1
Canadian Shield Brine T-93.
                               18.
                                         1.204
 9 15 2
          5.
                     4.0
                  645000.
                                  55100.
                                                               121080.
   464000.
                                                 7199.
  14207000.
                 221760.
                                 16284.
                                                1519.
END
Test Problem 1c: Canadian Shield Brine T-93; Frape et al., 1984, calcite + Mac
0060020001 0 1
                    0.0
ELEMENTS
          15
               61.0171
SOLUTION 1
Canadian Shield Brine T-93.
 9 15 2
                      4.0
                                         1.204
          5.
                               18.
   464000.
                  645000.
                                  55100.
                                                               121080.
                                                 7199.
                                 16284.
  14207000.
                 221760.
                                                1519.
MINERALS
CALCITE
           2
                     4.00
                             -8.406
                                                   1
  15 1.0
                  4 1.0
-171.8329
            -.077993 2839.319
                                     71.595
REACTION
  151.0
            4.0
END
Test Problem 1d: Canadian Shield Brine T-93, calcite equil. No scale
0060020000 0 1
                     0.0
ELEMENTS
C
          15
               61.0171
SOLUTION 1
Canadian Shield Brine T-93.
 9 15 2
          5.
                      4.0
                               18.
                                         1.204
   464000.
                  645000.
                                 55100.
                                                 7199.
                                                                121080.
  14207000.
                 221760.
                                 16284.
                                                1519.
MINERALS
                             -8.406
CALCITE
           2
                      4.00
                                                   1
                  4 1.0
  15 1.0
-171.8329
            -.077993
                        2839.319
                                     71.595
```

REACTION 151.0 4.0 END coefficients. ELEMENTS input is used to redefine the molecular weight of the carbon input species from that of CO₂ (default in PHRQPITZ.DATA) to that of HCO₃- for input of total alkalinity as HCO₃- (table 5). The new molecular weight of the carbon input species is used internally during execution and not retained in PHRQPITZ.DATA. Permanent changes to PHRQPITZ.DATA must be made through normal editing procedures. MINERALS input is included in parts 1c and 1d to establish equilibrium with calcite, and REACTION input is used to adjust the total inorganic carbon content to establish calcite equilibrium.

The output for test problems 1a - 1d is listed in table 7. The output formats have been adjusted to accommodate screen widths of 80 characters. The printed output first lists all input to PHRQPITZ. The first 4 keywords printed (table 7), ELEMENTS, SPECIES, LOOK MIN, MEAN GAM were printed as appropriate data from PHRQPITZ.DATA were read. Computed output begins with a print of the total molalities of all elements in SOLUTION 1 followed by a description of the solution and distribution of species. Computed variables under "Description of Solution" include the activity of H₂O, osmotic coefficient, ionic strength, pressure (in atmospheres) along the vapor pressure line of pure water (if temperature is greater than 100 °C), the density of pure water at the given temperature and pressure, the electrical imbalance (in equivalents per kilogram H₂O), and the total concentration of inorganic carbon (moles per kg H₂O).

The molality, activity, and activity coefficient (and log values) of all aqueous species in the PHRQPITZ.DATA file for which an input concentration was given are listed under the "Distribution of Species". This output is followed by tables of total molalities, activities, activity coefficients, mean activity coefficients, and saturation indices. The saturation indices are given under the heading LOOK MIN IAP as log(IAP/KT). This output is repeated in part 1b for unscaled results.

In parts 1c and 1d the equilibration step (with calcite) appears under the heading "STEP NUMBER 1". The total molalities of the elements are printed first before the total molality of inorganic carbon is adjusted to bring the solution to equilibrium with calcite. The calcite mass transfer given under the heading "PHASE BOUNDARIES" is zero indicating that calcite has neither been dissolved or precipitated. The moles of inorganic carbon added or removed from the solution to reach calcite saturation follows. This is followed by an updated print of the saturation indices, revised total molalities, "Description of Solution", etc.

The results of test problem 1 are useful in illustrating some of the problems in making speciation calculations with the measured pH. Examination of the output from parts 1a and 1b (table 7) shows that for the same brine analysis, the saturation indices of calcite and dolomite vary, respectively, from -0.31 and -1.08 (MacInnes scale) to +0.16 and -0.13 (unscaled). The computed total concentration of inorganic carbon and log PCO₂, which is based on the pH and alkalinity measurements, varies from 32.43 mmol/kg H₂O and 0.379 (MacInnes scale) to 10.25 mmol/kg H₂O and -0.13 (unscaled), respectively. This is a change of more than 300 percent for these variables. Because total inorganic carbon, total alkalinity, and PCO₂ can be measured within ten percent or better in many brines, the thermodynamics of the carbonate system in this brine would be better defined by measuring total alkalinity and either total inorganic carbon or PCO₂. If such data are available, the carbonate system is unambiguously defined and independent of the measured pH and choice of scale convention. A value of pH would then be defined by the aqueous model according to any particular choice in activity-coefficient scale.

As a means of examining possible variations in the pH of brine T-93 (table 5), and in the absence of total inorganic carbon or PCO₂ data, the solution was equilibrated with calcite on both activity-coefficient scales (parts 1c and 1d) by adjusting the total inorganic carbon content. This caused outgassing (MacInnes scale) and ingassing (unscaled) of CO₂ to reach calcite saturation. The results suggest that pH could vary as much as 0.5 between the two scales. The carbonate system is more closely defined, as evidenced by the similarity in the calculated PCO₂ and total inorganic carbon. The total inorganic carbon and PCO₂ are not in complete agreement because of the inconsistency of the measured pH (5.00) with either scale. This inconsistency can be resolved only if total inorganic carbon or PCO₂ is measured in conjunction with the total alkalinity measurement.

DATA READ FROM DISK

ELEMENTS SPECIES LOOK MIN MEAN GAM 1Test Problem 1a: Canadian Shield Brine T-93; Frape et al., 1984, Alk+Mac Scale 0000020001 0 0 0.00000 **ELEMENTS** С 15 0.61017E+02 0 0.00000E+00 SOLUTION 1 Canadian Shield Brine T-93. 9 15 2 5.00 4.00 18.0 1.20 4 6.400D+04 6 4.500D+04 5 5.100D+03 7 1.990D+02 12 1.080D+03 14 2.070D+05 22 1.760D+03 16 2.840D+02 15 1.900D+01 **1SOLUTION NUMBER 1** Canadian Shield Brine T-93.

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	1.815465D+00	0.2590
MG	2.385668D-01	-0.6224
NA	2.225424D+00	0.3474
K	5.786697D-03	-2.2376
SR	1.401380D-02	-1.8534
CL	6.638239D+00	0.8221
TOT ALK	3.540280D-04	-3.4510
S	3.361331D-03	-2.4735
BR	2.504262D-02	-1.6013

----DESCRIPTION OF SOLUTION----

PH = 5.0000 ACTIVITY H2O = 0.7208 OSMOTIC COEFFICIENT = 1.6522 IONIC STRENGTH = 8.5902 TEMPERATURE = 18.0000 PRESSURE = 1.0000 ATM DENSITY OF H2O = 0.9986 G/CC ELECTRICAL BALANCE = -3.0305D-01 TOTAL ALKALINITY = 3.5403D-04

ITERATIONS =

TOTAL CARBON = 3.2432D-02

DISTRIBUTION OF SPECIES

I	SPECIES	Z	MOLALITY	LOG MOLAL	MACINNES ACTIVITY	SCALE LOG ACT	MACINNE GAMMA	S SCALE LOG GAM
•	51 50125	_	HODRETTI	Bod Hobbid	11011111	DOG 1101	G 11.11.11	200 0
1	H+	1.0	7.997E-06	-5.097	1.000E-05	-5.000	1.251E+00	0.097
3	H20	0.0	7.208E-01	-0.142	7.208E-01	-0.142	1.000E+00	0.000
4	CA+2	2.0	1.815E+00	0.259	1.783E-01	-0.749	9.823E-02	-1.008
5	MG+2	2.0	2.386E-01	-0.622	4.144E-02	-1.383	1.737E-01	-0.760
6	NA+	1.0	2.225E+00	0.347	6.252E-01	-0.204	2.809E-01	-0.551
7	K+	1.0	5.787E-03	-2.238	5.991E-04	-3.222	1.035E-01	-0.985
12	SR+2	2.0	1.401E-02	-1.853	7.035E-04	-3.153	5.020E-02	-1.299
14	CL-	-1.0	6.638E+00	0.822	4.263E+01	1.630	6.422E+00	0.808
15	CO3-2	-2.0	3.764E-07	-6.424	1.169E-08	-7.932	3.106E-02	-1.508
16	S04-2	-2.0	3.361E-03	-2.474	5.503E-04	-3.259	1.637E-01	-0.786
22	BR-	-1.0	2.504E-02	-1.601	2.389E-01	-0.622	9.539E+00	0.979
31	OH-	-1.0	1.797E-09	-8.745	4.213E-10	-9.375	2.345E-01	-0.630
34	HCO3-	-1.0	3.473E-04	-3.459	2.980E-03	-2.526	8.581E+00	0.934
35	H2C03	0.0	3.208E-02	-1.494	9.948E-02	-1.002	3.101E+00	0.491
40	HS04-	-1.0	9.753E-08	-7.011	4.326E-07	-6.364	4.436E+00	0.647
76	CACO3	0.0	2.615E-06	-5.583	2.615E-06	-5.583	1.000E+00	0.000
85	MGOH+	1.0	3.780E-08	-7.423	2.480E-09	-8.605	6.563E-02	-1.183
86	MGCO3	0.0	3.718E-07	-6.430	3.718E-07	-6.430	1.000E+00	0.000

		MACINNES	MACINNES
SPECIES	TOTAL MOL	ACTIVITY	TOTAL GAMMA
Н+	8.0943D-06	1.0000D-05	1.2354D+00
• •		· · · · · · · · · · · · · · · · · · ·	• •
CA+2	1.8155D+00	1.7834D-01	9.8232D-02
MG+2	2.3857D-01	4.1441D-02	1.7371D-01
NA+	2.2254D+00	6.2518D-01	2.8092D-01
K+	5.7867D-03	5.9913D-04	1.0354D-01
SR+2	1.4014D-02	7.0352D-04	5.0202D-02
CL-	6.6382D+00	4.2630D+01	6.4219D+00
CO3-2	3.3633D-06	1.1691D-08	3.4761D-03
S04-2	3.3612D-03	5.5030D-04	1.6372D-01
BR-	2.5043D-02	2.3887D-01	9.5386D+00
OH-	3.9592D-0 8	4.2135D-10	1.0642D-02
HCO3-	3.4726D-04	2.9799D-03	8.5812D+00
H2C03	3.2081D-02	9.9484D-02	3.1010D+00

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
CACL2	1.5941D+00
CASO4	1.2682D-01
CACO3	1.8479D-02
CA(OH)2	2.2324D-02
MGCL2	1.9277D+00

MGSO4	1.6864D-01
MGCO3	2.4573D-02
MG(OH)2	2.6995D-02
NACL	1.3432D+00
NA2SO4	2.3465D-01
NAHCO3	1.5526D+00
NA2CO3	6.4976D-02
NAOH	5.4677D-02
KCL	8.1542D-01
K2S04	1.2062D-01
KHCO3	9.4258D-01
K2C03	3.3401D-02
КОН	3.3194D-02
HCL	2.8167D+00
H2S04	6.2987D-01
HBR	3.4329D+00

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-4.0082	-4.3239	0.3157
ARAGONIT	-8.6809	-8.1781	-0.5028
ARCANITE	-9.7044	-1.8866	-7.8178
BISCHOFI	1.0238	4.4775	-3.4536
BLOEDITE	-8.8781	-2.3470	-6.5311
BRUCITE	-20.1333	-10.8990	-9.2343
BURKEITE	-15.6749	-0.7720	-14.9029
CALCITE	-8.6809	-8.3700	-0.3109
CARNALLI	-0.5689	4.3300	-4.8989
DOLOMITE	-17.9956	-16.9167	-1.0789
EPSOMITE	-5.6372	-1.9674	-3.6698
GAYLUSSI	-17.7319	-9.4210	-8.3109
GLASERIT	-16.3902	-3.8030	-12.5872
GLAUBERI	-7.6756	-5.2450	-2.4306
GYPSUM	-4.2925	-4.5834	0.2909
HALITE	1.4257	1.5574	-0.1317
HEXAHYDR	-5.4950	-1.7161	-3.7789
KAINITE	-6.6613	-0.1930	-6.4683
KALICINI	-16.1546	-10.0580	-6.0966
KIESERIT	-4.7841	-0.1230	-4.6611
LABILE S	-11.6273	-5 .6720	-5.9553
LEONHARD	-5.2107	-0.8870	-4.3237
LEONITE	-14.9150	-3.9790	-10.9360
MAGNESIT	-9.3147	-7.7253	-1.5894
MIRABIL	-5.0891	-1.5459	-3.5432
MISENITE	-78.5956	-10.8060	-67.7896
NAHCOLIT	-13. 1361	-10.7420	-2.3941
NATRON	-9.7619	-0.8250	-8.9369
NESQUEHO	-9.7412	-5.167 0	-4.5742
PCO2	-1.0022	-1.3811	0.3788
PENTAHYD	-5.3528	-1.2850	-4.0678
PIRSSONI	-17.3054	-9.2340	-8.0714
POLYHALI	-22.6470	-13.7440	-8.9030
PORTLAND	-19.4995	-5.1900	-14.3095

```
SCHOENIT -15.1994 -4.3280 -10.8714
SYLVITE -1.5928 0.8257 -2.4184
SYNGENIT -13.8547 -7.4480 -6.4067
TRONA -21.7606 -11.3840 -10.3766

1Test Problem 1b: Canadian Shield Brine T-93; Frape et al., 1984, Alk + No scal
0000020000 0 0.00000
ELEMENTS
C 15 0.61017E+02
0 0.00000E+00

SOLUTION 1
Canadian Shield Brine T-93.
9 15 2 5.00 4.00 18.0 1.20
4 6.400D+04 6 4.500D+04 5 5.100D+03 7 1.990D+02 12 1.080D+03
14 2.070D+05 22 1.760D+03 16 2.840D+02 15 1.900D+01

1SOLUTION NUMBER 1
Canadian Shield Brine T-93.
```

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	1.815465D+00	0.2590
MG	2.385668D-01	-0.6224
NA	2.225424D+00	0.3474
K	5.786697D-03	-2.2376
SR	1.401380D-02	-1.8534
CL	6.638239D+00	0.8221
TOT ALK	3.540280D-04	-3.4510
S	3.361331D-03	-2.4735
BR	2.504262D-02	-1.6013

----DESCRIPTION OF SOLUTION----

PH = 5.0000
ACTIVITY H2O = 0.7214
OSMOTIC COEFFICIENT = 1.6512
IONIC STRENGTH = 8.5902
TEMPERATURE = 18.0000
PRESSURE = 1.0000 ATM
DENSITY OF H2O = 0.9986 G/CC
ELECTRICAL BALANCE = -3.0305D-01

TOTAL ALKALINITY = 3.5403D-04 ITERATIONS = 5

TOTAL CARBON = 1.0249D-02

DISTRIBUTION OF SPECIES

					UNSCA	LED	UNSC	ALED
Ι	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	2.570E-06	-5.590	1.000E-05	-5.000	3.891E+00	0.590
3	H20	0.0	7.214E-01	-0.142	7.214E-01	-0.142	1.000E+00	0.000
4	CA+2	2.0	1.815E+00	0.259	1.713E+00	0.234	9.435E-01	-0.025
5	MG+2	2.0	2.386E-01	-0.622	3.980E-01	-0.400	1.668E+00	0.222
6	NA+	1.0	2.225E+00	0.347	1.937E+00	0.287	8.703E-01	-0.060
7	K+	1.0	5.787E-03	-2.238	1.860E-03	-2.730	3.214E-01	-0.493
12	SR+2	2.0	1.401E-02	-1.853	6.812E-03	-2.167	4.861E-01	-0.313
14	CL-	-1.0	6.638E+00	0.822	1.370E+01	1.137	2.064E+00	0.315
15	CO3-2	-2.0	1.126E-06	-5.948	3.613E-09	-8.442	3.208E-03	-2.494
16	S04-2	-2.0	3.361E-03	-2.473	5.659E-05	-4.247	1.684E-02	-1.774
22	BR-	-1.0	2.504E-02	-1.601	7.677E-02	-1.115	3.065E+00	0.486
31	OH-	-1.0	5.596E-09	-8.252	4.217E-10	-9.375	7.536E-02	-1.123
34	HCO3-	-1.0	3.339E-04	-3.476	9.209E-04	-3.036	2.758E+00	0.441
35	H2C03	0.0	9.905E-03	-2.004	3.072E-02	-1.513	3.101E+00	0.491
40	HSO4-	-1.0	3.120E-08	-7.506	4.449E-08	-7. 352	1.426E+00	0.154
76	CACO3	0.0	7.762E-06	-5.110	7.762E-06	-5.110	1.000E+00	0.000
85	MGOH+	1.0	1.168E-07	-6.933	2.384E-08	-7.623	2.042E-01	-0.690
86	MGCO3	0.0	1.103E-06	-5.957	1.103E-06	-5.957	1.000E+00	0.000

		UNSCALED	UNSCALED
SPECIES	TOTAL MOL	ACTIVITY	TOTAL GAMMA
H+	2. 6 011D-06	1.0000D-05	3.8446D+00
CA+2	1.8155D+00	1.7128D+00	9.4345D-01
MG+2	2.3857D-01	3.9802D-01	1.6684D+00
NA+	2.2254D+00	1.9368D+00	8.7029D-01
K+	5.7867D-03	1.8601D-03	3.2145D-01
SR+2	1.4014D-02	6.8121D-03	4.8610D-01
CL-	6.6382D+00	1.3703D+01	2.0642D+00
CO3-2	9.9913D-06	3.6128D-09	3.6160D-04
S04-2	3.3613D-03	5.6590D-05	1.6836D-02
BR-	2.5043D-02	7.6765D-02	3.0654D+00
OH-	1.2235D-07	4.2171D-10	3.4466D-03
HCO3-	3.3392D-04	9.2086D-04	2.7577D+00
H2C03	9.9054D-03	3.0716D-02	3.1010D+00

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
CACL2	1.5901D+00
CASO4	1.2603D-01
CACO3	1.8470D-02
CA(OH)2	2.2379D-02
MGCL2	1.9228D+00
MGSO4	1.6760D-01
MGCO3	2.4562D-02
MG(OH)2	2.7062D-02
NACL	1.3403D+00

NA2S04	2.3363D-01
NAHCO3	1.5492D+00
NA2CO3	6.4941D-02
NAOH	5.4768D-02
KCL	8.1458D-01
K2S04	1.2027D-01
KHCO3	9.4152D-01
K2C03	3.3431D-02
KOH	3.32 8 5D-02
HCL	2.8171D+00
H2S04	6.2899D-01
HBR	3.4329D+00

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-4.0136	-4.3239	0.3103
ARAGONIT	-8.2084	-8.1781	-0.0303
ARCANITE	-9.7082	-1.8866	-7.8 216
BISCHOFI	1.0227	4.4775	-3.4548
BLOEDITE	-8.8877	-2.3470	-6.5407
BRUCITE	-19.1501	-10.8990	-8.2511
BURKEITE	-15.2142	-0.7720	-14.4422
CALCITE	-8.2084	-8.3700	0.1616
CARNALLI	-0.5709	4.3300	-4.9009
DOLOMITE	-17.0507	-16.9167	-0.1340
EPSOMITE	-5.6400	-1.9674	-3.6726
GAYLUSSI	-16.7855	-9.4210	-7.3645
GLASERIT	-16.3988	-3.8030	-12.5958
GLAUBERI	-7.6867	-5.2450	-2.4417
GYPSUM	-4.2972	-4.5834	0.2863
HALITE	1.4239	1.5574	-0.1336
HEXAHYDR	-5.4982	-1.7161	-3.7821
KAINITE	-6.6664	-0.1930	-6.4734
KALICINI	-16.1726	-10.0580	-6.1146
KIESERIT	-4.7892	-0.1230	-4.6662
LABILE S	-11.6434	-5.6720	-5.9714
LEONHARD	-5.2146	-0.8870	-4.3276
LEONITE	-14.9228	-3.9790	-10.9438
MAGNESIT	-8.8423	-7.7253	-1.1170
MIRABIL	-5.0911	-1.5459	-3.5452
MISENITE	-81.5745	-10.8060	-70.7685
NAHCOLIT	-13.1551	-10.7420	-2.4131
NATRON	-9.2860	-0.8250	-8.4610
NESQUEHO	-9.2677	-5.1670	-4.1007
PCO2	-1.5126	-1.3811	-0.1316
PENTAHYD	-5.3564	-1.2850	-4.0714
PIRSSONI	-16.3601	-9.2340	-7.1261
POLYHALI	-22.6662	-13.7440	-8.9222
PORTLAND	-18.5163	-5.1900	-13.3263
SCHOENIT	-15.2064	-4.3280	-10.8784
SYLVITE	-1.5936	0.8257	-2.4193
SYNGENIT	-13.8635	-7.4480	-6.4155
TRONA	-21.3067	-11.3840	-9.9227

1Test Problem 1c: Canadian Shield Brine T-93; Frape et al., 1984, calcite + Mac 0.00000 0060020001 0 1 **ELEMENTS** C 15 0.61017E+02 0.00000E+00 0 SOLUTION 1 Canadian Shield Brine T-93. 9 15 2 5.00 4.00 18.0 1.20 4 6.400D+04 6 4.500D+04 5 5.100D+03 7 1.990D+02 12 1.080D+03 14 2.070D+05 22 1.760D+03 16 2.840D+02 15 1.900D+01 MINERALS CALCITE 4.0 -8.4 0.00 0.000 15 1.00 4 1.00 -1.7183E+02 -7.7993E-02 2.8393E+03 7.1595E+01 0.0000E-01 0.00 0.00 0.00 0 0.000 REACTION 15 1.000 4.000 **1SOLUTION NUMBER 1** Canadian Shield Brine T-93.

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	1.815465D+00	0.2590
MG	2.385668D-01	-0.6224
NA	2.225424D+00	0.3474
K	5.786697D-03	-2.2376
SR	1.401380D-02	-1.8534
CL	6.638239D+00	0.8221
TOT ALK	3.540280D-04	-3.4510
S	3.361331D-03	-2.4735
BR	2.504262D-02	-1.6013

----DESCRIPTION OF SOLUTION----

PH = 5.0000

ACTIVITY H20 = 0.7208 OSMOTIC COEFFICIENT = 1.6522

DSMOTIC COEFFICIENT = 1.6522

IONIC STRENGTH = 8.5902 TEMPERATURE = 18.0000

PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9986 G/CC ELECTRICAL BALANCE = -3.0305D-01 TOTAL ALKALINITY = 3.5403D-04

ITERATIONS = 5

TOTAL CARBON = 3.2432D-02

DISTRIBUTION OF SPECIES

					MACINNES	SCALE	MACINNE	S SCALE
Ι	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	7.997E-06	-5.097	1.000E-05	-5.000	1.251E+00	0.097
3	H20	0.0	7.208E-01	-0.142	7.208E-01	-0.142	1.000E+00	0.000
4	CA+2	2.0	1.815E+00	0.259	1.783E-01	-0.749	9.823E-02	-1.008
5	MG+2	2.0	2.386E-01	-0.622	4.144E-02	-1.383	1.737E-01	-0.760
6	NA+	1.0	2.225E+00	0.347	6.252E-01	-0.204	2.809E-01	-0.551
7	K+	1.0	5.787E-03	-2.238	5.991E-04	-3.222	1.035E-01	-0.985
12	SR+2	2.0	1.401E-02	-1.853	7.035E-04	-3.153	5.020E-02	-1.299
14	CL-	-1.0	6.638E+00	0.822	4.263E+01	1.630	6.422E+00	0.808
15	CO3-2	-2.0	3.764E-07	-6.424	1.169E-08	-7.932	3.106E-02	-1.508
16	S04-2	-2.0	3.361E-03	-2.474	5.503E-04	-3.259	1.637E-01	-0.786
22	BR-	-1.0	2.504E-02	-1.601	2.389E-01	-0.622	9.539E+00	0.979
31	OH-	-1.0	1.797E-09	-8.745	4.213E-10	-9.375	2.345E-01	-0.630
34	HCO3-	-1.0	3.473E-04	-3.459	2.980E-03	-2.526	8.581E+00	0.934
35	H2C03	0.0	3.208E-02	-1.494	9.948E-02	-1.002	3.101E+00	0.491
40	HS04-	-1.0	9.753E-08	-7.011	4.326E-07	-6.364	4.436E+00	0.647
7 6	CACO3	0.0	2.615E-06	-5.583	2.615E-06	-5.583	1.000E+00	0.000
85	MGOH+	1.0	3.780E-08	-7.423	2.480E-09	-8.605	6.563E-02	-1.183
86	MGCO3	0.0	3.718E-07	-6.430	3.718E-07	-6.430	1.000E+00	0.000
	-		•	-	-	-		

SPECIES	TOTAL MOL	MACINNES ACTIVITY	MACINNES TOTAL GAMMA
H+	8.0943D-06	1.0000D-05	1.2354D+00
CA+2	1.8155D+00	1.7834D-01	9.8232D-02
MG+2	2.3857D-01	4.1441D-02	1.7371D-01
NA+	2.2254D+00	6.2518D-01	2.8092D-01
K+	5.7867D-03	5.9913D-04	1.0354D-01
SR+2	1.4014D-02	7.0352D-04	5.0202D-02
CL-	6.6382D+00	4.2630D+01	6.4219D+00
CO3-2	3.3633D-06	1.1691D-08	3.4761D-03
S04-2	3.3612D-03	5.5030D-04	1.6372D-01
BR-	2.5043D-02	2.3887D-01	9.5386D+00
OH-	3.9592D-08	4.2135D-10	1.0642D-02
HCO3-	3.4726D-04	2.9799D-03	8.5812D+00
H2C03	3.2081D-02	9.9484D-02	3.1010D+00

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
CACL2	1.5941D+00
CASO4	1.2682D-01
CACO3	1.8479D-02
CA(OH)2	2.2324D-02
MGCL2	1.9277D+00
MGSO4	1.6864D-01

MGCO3	2.4573D-02
MG(OH)2	2.6995D-02
NACL	1.3432D+00
NA2SO4	2.3465D-01
NAHCO3	1.5526D+00
NA2CO3	6.4976D-02
NAOH	5.4677D-02
KCL	8.1542D-01
K2S04	1.2062D-01
KHCO3	9.4258D-01
K2C03	3.3401D-02
КОН	3.3194D-02
HCL	2.8167D+00
H2S04	6.2987D-01
HBR	3.4329D+00

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-4.0082	-4.3239	0.3157
ARAGONIT	-8.6809	-8.1781	-0.5028
ARCANITE	-9 .7 044	-1.8866	-7.8178
BISCHOFI	1.0238	4.4775	-3.4536
BLOEDITE	-8.8781	-2.3470	-6.5311
BRUCITE	-20.1333	-10.899 0	-9.2343
BURKEITE	-15.6749	-0.7720	-14.9029
CALCITE	-8.6809	-8.3700	-0.3109
CARNALLI	-0.5689	4.3300	-4.8989
DOLOMITE	-17.9956	-16.9167	-1.0789
EPSOMITE	-5.6372	-1.9674	-3.6698
GAYLUSSI	-17.7319	-9.4210	-8.3109
GLASERIT	-16.3902	-3.8030	-12.5872
GLAUBERI	-7.6756	-5.2450	-2.4306
GYPSUM	-4.2925	-4.5834	0.2909
HALITE	1.4257	1.5574	-0.1317
HEXAHYDR	-5.4950	-1.7161	-3.7789
KAINITE	-6.6613	-0.1930	-6.4683
KALICINI	-16.1546	-10.0580	-6.0966
KIESERIT	-4.7841	-0.1230	-4.6611
LABILE S	-11.6273	-5.6720	-5.9553
LEONHARD	-5.2107	-0.8870	-4.3237
LEONITE	-14.9150	-3.9790	-10.9360
MAGNESIT	-9.3147	-7.7253	-1.5894
MIRABIL	-5.0891	-1.5459	-3.5432
MISENITE	-78.5956	-10.8060	-67.7896
NAHCOLIT	-13.1361	-10.7420	-2.3941
NATRON	-9.7619	-0.8250	-8.9369
NESQUEHO	-9.7412	-5.1670	-4.5742
PCO2	-1.0022	-1.3811	0.3788
PENTAHYD	-5.3528	-1.2850	-4.0678
PIRSSONI	-17.3054	-9.2340	-8.0714
POLYHALI	-22.6470	-13.7440	-8.9030
PORTLAND	-19.4995	-5.1900	-14.3095
SCHOENIT	-15.1994	-4.3280	-10.8714

SYLVITE	-1.5928	0. 8 25 7	-2.4184
SYNGENIT	-13.8547	- 7.4480	-6.4067
TRONA	-21 .7 606	-11.384 0	-10.3766

1STEP NUMBER 1

TOTAL MOLALITIES OF ELEMENTS

ELEMENT'	MOLALITY	LOG MOLALITY
CA	1.815465D+00	0.2590
MG	2.385668D-01	-0.6224
NA	2.225424D+00	0.3474
K	5.786697D-03	-2.2376
SR	1.401380D-02	-1.8534
CL	6.638239D+00	0.8221
TOT ALK	3.243193D-02	-1.4890
S	3.361331D-03	-2.4735
BR	2.504262D-02	-1.6013

----PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
CALCITE	0.00000D-01	-8.3700	-8.3700	0.0000

- * NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.
- ** -1.752259D-02 MOLES OF REACTION HAVE BEEN ADDED TO THE SOLUTION TO REACH THE CALCITE PHASE BOUNDARY.

REACTION IS:

1.000000 MOLES OF C VALENCE = 4.000

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-4.0124	-4.3239	0.3115
ARAGONIT	-8.3700	-8.1781	-0.1919
ARCANITE	-9.7074	-1.8866	-7.8208
BISCHOFI	1.0229	4.4775	-3.4545
BLOEDITE	-8.8857	-2.3470	-6.5387
BRUCITE	-19.4792	-10.8990	-8.5803

BURKEITE	-15.3733	-0.7720	-14.6013
CALCITE	-8.3700	-8.3700	0.0000
CARNALLI	-0.5705	4.3300	-4.9005
DOLOMITE	-17.3739	-16.9167	-0.4572
EPSOMITE	-5.6394	-1.9674	-3.6720
GAYLUSSI	-17.1090	-9.4210	-7.6880
GLASERIT	-16.3970	-3.8030	-12.5940
GLAUBERI	-7.6843	-5.2450	-2.4 39 3
GYPSUM	-4.296 2	-4.5834	0.2873
HALITE	1.4243	1.5574	-0.1332
HEXAHYDR	-5.4975	-1.7161	-3.7814
KAINITE	-6.6653	-0.1930	-6.4723
KALICINI	-16.1699	-10.0580	-6.1119
KIESERIT	-4.7881	-0.1230	-4.6651
LABILE S	-11.6400	-5.6720	-5.9680
LEONHARD	-5.2138	-0.8870	-4.3268
LEONITE	-14.9211	-3.9790	-10.9421
MAGNESIT	-9.0038	-7.7253	-1.2786
MIRABIL	-5.0907	-1.5459	-3.5448
MISENITE	-80.5809	-10.8060	-69.7749
NAHCOLIT	-13.1521	-10.7420	-2.4101
NATRON	-9.4483	-0.8250	-8.6233
NESQUEHO	-9.4295	-5.1670	-4.2625
PCO2	-1.3451	-1.3811	0.0359
PENTAHYD	-5. 3556	-1.2850	-4.0706
PIRSSONI	-16.6833	-9.2340	-7.4493
POLYHALI	-22.6622	-13.7440	-8.9182
PORTLAND	-18.8454	-5.19 00	-13.6554
SCHOENIT	-15.2049	-4.3280	-10.8769
SYLVITE	-1.5 935	0.8257	-2.4191
SYNGENIT	-13.8617	-7.4480	-6.4137
TRONA	-21.4654	-11.3840	-10.0814

TOTAL MOLALITIES OF ELEMENTS

MOLALITY	LOG MOLALITY
1.815465D+00	0.2590
2.385668D-01	-0.6224
2.225424D+00	0.3474
5.786697D-03	-2.2376
1.401380D-02	-1.8534
6.638239D+00	0.8221
1.490935D-02	-1.8265
3.361331D-03	-2.4735
2.504262D-02	-1.6013
	1.815465D+00 2.385668D-01 2.225424D+00 5.786697D-03 1.401380D-02 6.638239D+00 1.490935D-02 3.361331D-03

----DESCRIPTION OF SOLUTION----

PH = 5.3282

ACTIVITY H20 = 0.7213 OSMOTIC COEFFICIENT = 1.6515

IONIC STRENGTH = 8.5902

TEMPERATURE = 18.0000

PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9986 G/CC ELECTRICAL BALANCE = -3.0305D-01

TOTAL ALKALINITY = 3.4974D-04

ITERATIONS = 5

DISTRIBUTION OF SPECIES

					MACINNES	SCALE	MACINNE	S SCALE
Ι	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	3.756E-06	-5.425	4.697E-06	-5.328	1.250E+00	0.097
3	H20	0.0	7.213E-01	-0.142	7.213E-01	-0.142	1.000E+00	0.000
4	CA+2	2.0	1.815E+00	0.259	1.771E-01	-0.752	9.757E-02	-1.011
5	MG+2	2.0	2.386E-01	-0.622	4.116E-02	-1.386	1.725E-01	-0.763
6	NA+	1.0	2.225E+00	0.347	6.229E-01	-0.206	2.799E-01	-0.553
7	K+	1.0	5.787E-03	-2.238	5.980E-04	-3.223	1.033E-01	-0.986
12	SR+2	2.0	1.401E-02	-1.853	7.033E-04	-3.153	5.019E-02	-1.299
14	CL-	-1.0	6.638E+00	0.822	4.264E+01	1.630	6.424E+00	0.808
15	CO3-2	-2.0	7.750E-07	-6.111	2.408E-08	-7.618	3.107E-02	-1.508
16	S04-2	-2.0	3.361E-03	-2.473	5.486E-04	-3.261	1.632E-01	-0.787
22	BR-	-1.0	2.504E-02	-1.601	2.389E-01	-0.622	9.540E+00	0.980
31	OH-	-1.0	3.828E-09	-8.417	8.977E-10	-9.047	2.345E-01	-0.630
34	HCO3-	-1.0	3.359E-04	-3.474	2.883E-03	-2.540	8.583E+00	0.934
35	H2C03	0.0	1.457E-02	-1.837	4.517E-02	-1.345	3.101E+00	0.491
40	HSO4-	-1.0	4.566E-08	-7.341	2.026E-07	-6.693	4.437E+00	0.647
76	CACO3	0.0	5.350E-06	-5.272	5.350E-06	-5.272	1.000E+00	0.000
85	MGOH+	1.0	8.000E-08	-7.097	5.249E-09	-8.280	6.561E-02	-1.183
86	MGCO3	0.0	7.606E-07	-6.119	7.606E-07	-6.119	1.000E+00	0.000

SPECIES	TOTAL MOL	MACINNES ACTIVITY	MACINNES TOTAL GAMMA
H+	3.8021D-06	4.6967D-06	1.2353D+00 9.7569D-02 1.7254D-01 2.7989D-01 1.0333D-01 5.0185D-02 6.4241D+00 3.4971D-03 1.6322D-01 9.5403D+00 1.0709D-02 8.5827D+00 3.1010D+00
CA+2	1.8155D+00	1.7713D-01	
MG+2	2.3857D-01	4.1162D-02	
NA+	2.2254D+00	6.2288D-01	
K+	5.7867D-03	5.9796D-04	
SR+2	1.4014D-02	7.0328D-04	
CL-	6.6382D+00	4.2645D+01	
CO3-2	6.8857D-06	2.4080D-08	
SO4-2	3.3613D-03	5.4863D-04	
BR-	2.5043D-02	2.3891D-01	
OH-	8.3826D-08	8.9771D-10	
HCO3-	3.3588D-04	2.8827D-03	
H2CO3	1.4567D-02	4.5171D-02	

---- MEAN ACTIVITY COEFFICIENT ----

FORMULA MEAN GAMMA

	FORMULA	FIEAN GAPIPIA	
	CACL2 CASO4 CACO3 CA(OH)2 MGCL2 MGSO4 MGCO3 MG(OH)2 NACL NA2SO4 NAHCO3 NA2CO3 NAOH KCL K2SO4 KHCO3 K2CO3 KOH	1.9238D+00 1.6781D-01 2.4564D-02 2.7048D-02 1.3409D+00 2.3384D-01 1.5499D+00 6.4948D-02 5.4749D-02 8.1476D-01 1.2034D-01 9.4174D-01 3.3425D-02 3.3266D-02	
	HCL	2.8170D+00	
	H2S04	6.2917D-01	
	HBR	3.4329D+00	
1Test Problem 1d: 0060020000 0 1 ELEMENTS	Canadian Shield : 0.00000	Brine T-93, calcite equ	uil. No scale
C 15	0.61017E+02 0.00000E+00		

SOLUTION 1

Canadian Shield Brine T-93.

9 15 2 5.00 4.00 18.0 1.20 4 6.400D+04 6 4.500D+04 5 5.100D+03 7 1.990D+02 12 1.080D+03 14 2.070D+05 22 1.760D+03 16 2.840D+02 15 1.900D+01

MINERALS

4.0 -8.4 CALCITE 2 0.00 0.000

4 1.00 15 1.00

-1.7183E+02 -7.7993E-02 2.8393E+03 7.1595E+01 0.0000E-01

0.00 0.00 0.00 0 0.000

REACTION

15 1.000 4.000

1SOLUTION NUMBER 1

Canadian Shield Brine T-93.

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	1.815465D+00	0.2590
MG	2.385668D-01	-0.6224

NA	2.225424D+00	0.3474
K	5.786697D-03	- 2.2376
SR	1.4013CCD-02	-1.8534
CL	6.638239D+00	0.8221
TOT ALK	3.540280D-04	-3.4510
S	3.361331D-03	-2.4735
BR	2.504262 D-0 2	-1.6013

----DESCRIPTION OF SOLUTION----

PH = 5.0000
ACTIVITY H2O = 0.7214
OSMOTIC COEFFICIENT = 1.6512
IONIC STRENGTH = 8.5902
TEMPERATURE = 18.0000
PRESSURE = 1.0000 ATM
DENSITY OF H2O = 0.9986 G/CC

DENSITY OF H2O = 0.9986 G/CC ELECTRICAL BALANCE = -3.0305D-01 TOTAL ALKALINITY = 3.5403D-04

ITERATIONS = 5

TOTAL CARBON = 1.0249D-02

DISTRIBUTION OF SPECIES

					UNSCA	LED	UNSC	ALED
Ι	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
				_				
1	H+	1.0	2.570E-06	-5.59 0	1.000E-05	-5.000	3.891E+00	0.590
3	H20	0.0	7.214E-01	-0.142	7.214E-01	-0.142	1.000E+00	0.000
4	CA+2	2.0	1.815E+00	0.259	1.713E+00	0.234	9.435E-01	-0.025
5	MG+2	2.0	2.386E-01	-0.622	3.980E-01	-0.400	1.668E+00	0.222
6	NA+	1.0	2.225E+00	0.347	1.937E+00	0.287	8.703E-01	-0.060
7	K+	1.0	5.787E-03	-2.238	1.860E-03	-2.730	3.214E-01	-0.493
12	SR+2	2.0	1.401E-02	-1.853	6.812E-03	-2.167	4.861E-01	-0.313
14	CL-	-1.0	6.638E+00	0.822	1.370E+01	1.137	2.064E+00	0.315
15	CO3-2	-2.0	1.126E-06	-5.948	3.613E-09	-8.442	3.208E-03	-2.494
16	S04-2	-2.0	3.361E-03	-2.473	5.659E-05	-4.247	1.684E-02	-1.774
22	BR-	-1.0	2.504E-02	-1.601	7.677E-02	-1.115	3.065E+00	0.486
31	OH-	-1.0	5.596E-09	-8.252	4.217E-10	-9.375	7.536E-02	-1.123
34	HCO3-	-1.0	3.339E-04	-3.476	9.209E-04	-3.036	2.758E+00	0.441
35	H2CO3	0.0	9.905E-03	-2.004	3.072E-02	-1.513	3.101E+00	0.491
40	HS04-	-1.0	3.120E-08	-7.506	4.449E-08	-7.352	1.426E+00	0.154
76	CACO3	0.0	7.762E-06	-5.110	7.762E-06	-5.110	1.000E+00	0.000
	MGOH+	1.0	1.168E-07	-6.933	2.384E-08	-7.623	2.042E-01	-0.690
-	MGCO3	0.0	1.103E-06	-5.957	1.103E-06	-5.957	1.000E+00	0.000

UNSCALED UNSCALED SPECIES TOTAL MOL ACTIVITY TOTAL GAMMA

H+	2.6011D-06	1.0000D-05	3.8446D+00
CA+2	1.8155D+00	1.7128D+00	9.4345D-01
MG+2	2.3857D-01	3.9802D-01	1.6684D+00
NA+	2.2254D+00	1.9368D+00	8.7029D-01
K+	5.7867D-03	1.8601D-03	3.2145D-01
SR+2	1.4014D-02	6.8121D-03	4.8610D-01
CL-	6.6382D+00	1.3703D+01	2.0642D+00
CO3-2	9.9913D-06	3.6128D-09	3.6160D-04
S04-2	3.3613D-03	5.6590D-05	1.6836D-02
BR-	2.5043D-02	7.6765D-02	3.0654D+00
OH-	1.2235D-07	4.2171D-10	3.4466D-03
HCO3-	3.3392D-04	9.2086D-04	2.7577D+00
H2C03	9.9054D-03	3.0716D-02	3.1010D+00

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
CACL2	1.5901D+00
CASO4	1.2603D-01
CACO3	1.8470D-02
CA(OH)2	2.2379D-02
MGCL2	1.9228D+00
MGSO4	1.6760D-01
MGCO3	2.4562D-02
MG(OH)2	2.7062D-02
NACL	1.3403D+00
NA2S04	2.3363D-01
NAHCO3	1.5492D+00
NA2CO3	6.4941D-02
NAOH	5.4768D-02
KCL	8.1458D-01
K2S04	1.2027D-01
KHCO3	9.4152D-01
K2C03	3.3431D-02
KOH	3.3285D-02
HCL	2.8171D+00
H2S04	6.2899D-01
HBR	3.4329D+00

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-4.0136	-4.3239	0.3103
ARAGONIT	-8.2084	-8.1781	-0.0303
ARCANITE	-9.7082	-1.8866	-7.8216
BISCHOFI	1.0227	4.4775	-3.4548
BLOEDITE	-8.8877	-2.3470	-6.5407
BRUCITE	-19.1501	-10.8990	-8.2511
BURKEITE	-15.2142	-0.7720	-14.4422
CALCITE	-8.2084	-8.3700	0.1616
CARNALLI	-0.5709	4.3300	-4.9009

DOLOMITE	-17.0507	-16.9167	-0.1340
EPSOMITE	-5.6400	-1.9674	-3.6726
GAYLUSSI	-16.7855	-9.4210	-7.3645
GLASERIT	-16.3988	-3.8 030	-12.5958
GLAUBERI	-7.6867	-5.2450	-2.4417
GYPSUM	-4.2972	-4.5834	0.2863
HALITE	1.4239	1.5574	-0.1336
HEXAHYDR	-5.4982	-1.7161	-3.7821
KAINITE	-6.6664	-0.1930	-6.4734
KALICINI	-16.1726	-10.0580	-6.1146
KIESERIT	-4.7892	-0.1230	-4.6662
LABILE S	-11.6434	-5.6720	-5.9714
LEONHARD	-5.2146	-0.8870	-4.3276
LEONITE	-14.9228	-3.9790	-10.9438
MAGNESIT	-8.8423	-7.7253	-1.1170
MIRABIL	-5.0911	-1.5459	-3.5452
MISENITE	-81.5745	-10.80 60	-70.7685
NAHCOLIT	-13.1551	-10.7420	-2.4131
NATRON	-9.2860	-0.8250	-8.4610
NESQUEHO	-9.2677	-5.1670	-4.1007
PCO2	-1.5126	-1.3811	-0.1316
PENTAHYD	-5.3564	-1.2850	-4.0714
PIRSSONI	-16.3601	-9.2340	-7.1261
POLYHALI	-22.6662	-13.7440	-8.9222
PORTLAND	-18.5163	-5.1 900	-13.3263
SCHOENIT	-15.2064	-4.3280	-10 .8 784
SYLVITE	-1.5936	0.8257	-2.4193
SYNGENIT	-13.8635	-7.4480	-6.4155
TRONA	-21.3067	-11.3840	-9.9227

1STEP NUMBER 1

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA MG NA K SR CL TOT ALK S BR	1.815465D+00 2.385668D-01 2.225424D+00 5.786697D-03 1.401380D-02 6.638239D+00 1.024929D-02 3.361331D-03 2.504262D-02	0.2590 -0.6224 0.3474 -2.2376 -1.8534 0.8221 -1.9893 -2.4735 -1.6013

----PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
CALCITE	0.00000D-01	-8.3700	-8.3700	0.0000

* NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

** 5.154798D-03 MOLES OF REACTION HAVE BEEN ADDED TO THE SOLUTION TO REACH THE CALCITE PHASE BOUNDARY.

REACTION IS:

1.000000 MOLES OF C VALENCE = 4.000

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-4.0123	-4.3239	0.3116
ARAGONIT	-8.3700	-8.1781	-0.1919
ARCANITE	-9.7073	-1.8866	-7.8207
BISCHOFI	1.0230	4.4775	-3.4545
BLOEDITE	-8.8855	-2.3470	-6.5385
BRUCITE	-19.4936	-10.8990	-8.5946
BURKEITE	-15.3731	-0.7720	-14.6011
CALCITE	-8.3700	-8.3700	0.0000
CARNALLI	-0.5705	4.3300	-4.9005
DOLOMITE	-17.3739	-16.9167	-0.4572
EPSOMITE	-5.6393	-1.9674	-3.6720
GAYLUSSI	-17.1090	-9.4210	-7.6880
GLASERIT	-16.3968	-3.8030	-12.5938
GLAUBERI	-7.6841	-5.2450	-2.4391
GYPSUM	-4.2961	-4.5834	0.2874
HALITE	1.4243	1.5574	-0.1331
HEXAHYDR	-5.4974	-1.7161	-3.7814
KAINITE	-6.6652	-0.1930	-6.4722
KALICINI	-16.1627	-10.0580	-6.1047
KIESERIT	-4.7880	-0.1230	-4.6650
LABILE S	-11.6396	-5.6720	-5.9676
LEONHARD	-5.2137	-0.8870	-4.3267
LEONITE	-14.9210	-3.9790	-10.9420
MAGNESIT	-9.0038	-7.7253	-1.2786
MIRABIL MISENITE	-5.0907	-1.5459	-3.5447
NAHCOLIT	-80.5372	-10.8060 -10.7420	-69.7312
NATRON	-13.1450		-2.4030 -8.6234
NESQUEHO	-9.4484	-0.8250 -5.1670	-4.2625
PCO2	-9.4295 -1.3308		0.0503
PENTAHYD	-5.3556	-1.3811 -1.2850	-4.0706
PIRSSONI	-16.6833	-9.2340	-7.4493
POLYHALI	-22.6618	-9.2340 -13.7440	-7.4493 -8.9178
PORTLAND	-18.8598	-13.7440 -5.1900	-13.6698
SCHOENIT	-15.2047	-4.3280	-10.8767
SYLVITE	-1.5934	0.8257	-2.4191
PILVIIL	- 1.5954	0.0257	-2.4191

SYNGENIT	-13.8615	-7.4480	-6.4135
TRONA	-21.4583	-11.3840	-10.0743

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	1.815465D+00	0.2590
MG	2.385668D-01	-0.6224
NA	2.225424D+00	0.3474
K	5.7866 97 D-03	-2.2376
SR	1.401380D-02	-1.8534
CL	6.638239D+00	0.8221
С	1.540409D-02	-1.8124
S	3.361331D-03	-2.4735
BR	2.504262D-02	-1.6013

----DESCRIPTION OF SOLUTION----

PH = 4.8279

ACTIVITY H20 = 0.7213

OSMOTIC COEFFICIENT = 1.6515

IONIC STRENGTH = 8.5902 TEMPERATURE = 18.0000

PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9986 G/CC ELECTRICAL BALANCE = -3.0305D-01

TOTAL ALKALINITY = 3.5529D-04 ITERATIONS = 7

DISTRIBUTION OF SPECIES

					UNSCA	LED	UNSC	ALED
Ι	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
4	11.	1.0	2 9405 06	E 1140	4 4065 05	h 000	2 0045 00	0 500
ı	H+	1.0	3.819E-06	-5.418	1.486E-05	-4.828	3.891E+00	0.590
3	H20	0.0	7.213E-01	-0.142	7.213E-01	-0.142	1.000E+00	0.000
4	CA+2	2.0	1.815E+00	0.259	1.716E+00	0.235	9.452E-01	-0.024
5	MG+2	2.0	2.386E-01	-0.622	3.988E-01	-0.399	1.672E+00	0.223
6	NA+	1.0	2.225E+00	0.347	1.939E+00	0.288	8.712E-01	-0.060
7	K+	1.0	5.787E-03	-2.238	1.861E-03	-2.730	3.216E-01	-0.493
12	SR+2	2.0	1.401E-02	-1.853	6.812E-03	-2.167	4.861E-01	-0.313
14	CL-	-1.0	6.638E+00	0.822	1.370E+01	1.137	2.064E+00	0.315
15	CO3-2	-2.0	7.748E-07	-6.111	2.486E-09	-8.605	3.208E-03	-2.494
16	S04-2	-2.0	3.361E-03	-2.473	5.665E-05	-4.247	1.685E-02	-1.773
22	BR-	-1.0	2.504E-02	-1.601	7.677E-02	-1,115	3.065E+00	0.486

31 OH	I - -1	.0	3.765E-09	-8.424	2.837E-10	-9.547	7.535E-02	-1.123
34 HC	031	.0	3.414E-04	-3.467	9.416E-04	-3.026	2.758E+00	0.441
35 H2	2CO3 0	.0	1.506E-02	-1.822	4.669E-02	-1.331	3.101E+00	0.491
40 HS	304 –	.0	4.642E-08	-7.333	6.618E-08	-7.179	1.426E+00	0.154
76 CA	CO3 0	.0	5.350E-06	-5.272	5.350E-06	-5.272	1.000E+00	0.000
85 MG	OH+ 1	.0	7.869E-08	-7.104	1.607E-08	-7.794	2.042E-01	-0.690
86 MG	CO3 0	.0	7.606E-07	-6.119	7.606E-07	-6.119	1.000E+00	0.000

SPECIES	TOTAL MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAMMA
H+	3.8658D-06	1.4862D-05	3.8445D+00
CA+2	1.8155D+00	1.7160D+00	9.4524D-01
MG+2	2.3857D-01	3.9877D-01	1.6715D+00
NA+	2.2254D+00	1.9388D+00	8.7118D-01
K+	5.7867D-03	1.8611D-03	3.2162D-01
SR+2	1.4014D-02	6.8121D-03	4.8610D-01
CL-	6.6382D+00	1.3702D+01	2.0641D+00
CO3-2	6.8856D-06	2.4856D-09	3.6099D-04
S04-2	3.3613D-03	5.6646D-05	1.6853D-02
BR-	2.5043D-02	7.6765D-02	3.0654D+00
OH-	8.2458D-08	2.8369D-10	3.4404D-03
HCO3-	3.4144D-04	9.4159D-04	2.7577D+00
H2C03	1.5056D-02	4.6688D-02	3.1010D+00

--- MEAN ACTIVITY COEFFICIENT ----

Test problem 2: Equilibration of pure water with a set of minerals accompanied by an irreversible reaction

Using the computer code SNORM (Bodine and Jones, 1986) and the mineral stability data of Harvie and others (1984), it can be shown that the final equilibrium mineral assemblage upon evaporation of sea water to dryness in an environment open to air (log PCO₂ = -3.5) at 25 °C is anhydrite (CaSO₄), bischofite (MgCl₂·6H₂O), carnallite (KMgCl₃·6H₂O), halite (NaCl), kieserite (MgSO₄·H₂O), and magnesite (MgCO₃). According to the mineralogic phase rule this is an invariant system. That is, once evaporation of sea water reaches saturation with these phases, further evaporation of that solution or other inputs of calcium, magnesium, sodium, potassium, carbon, chloride or sulfate would change only the masses of the solids formed without altering the composition of the equilibrium solution. This test problem uses PHRQPITZ to test this reasoning and at the same time evaluate the internal consistency of SNORM and PHRQPITZ. Because both the SNORM and PHRQPITZ codes use the Harvie and others (1984) data base (though in very different ways) we expect to find with PHRQPITZ that no other phases than those listed above could precipitate from the final equilibrium solution, that is, that the saturation indices of all other minerals in the Harvie and others (1984) data base are less than zero in the equilibrium solution.

The input file for test problem 2 is listed in table 8. The starting solution was taken as pure water at 25 °C. IOPT(2) was arbitrarily selected to define the starting pH via electrical balance. The problem combines irreversible reaction with mineral equilibration (IOPT(3) = 3). An irreversible reaction (the addition of 0.0, 0.1 and 1.0 moles of "sea salt") is used as one means of modeling evaporation (of sea water). The second line of the input file indicates that there will be 3 increments of reaction (NSTEPS = 3) and there are 7 components in the reaction (NCOMPS = 7). The moles of each reaction increment and the stoichiometry of the reactant (sea salt) are defined under STEPS and REACTION input.

The computed results are listed in table 9. Following a print of the input data set, the starting solution, pure water, is speciated and the pH consistent with the thermodynamic data of PHRQPITZ.DATA is 6.9990. The calculations are performed in 3 similar steps, with each case beginning from the pure water starting point (solution 1). In step 1 zero moles of sea salt were added so that pure water could be equilibrated with the mineral set alone. The mass transfers of anhydrite, bischofite, carnallite, halite, kieserite, magnesite, and CO₂ appear under the heading "PHASE BOUNDARIES". The results show that all 6 minerals would dissolve and be accompanied by a small loss of CO₂ to the atmosphere. Examination of the saturation indices shows that all other minerals of the Harvie and others (1984) data base are undersaturated in the equilibrium solution. This confirms the prediction from SNORM and constitutes a partial validation of the two codes. The final equilibrium solution is predominantly a MgCl₂ solution of ionic strength 17.3873, pH 6.01 and water activity of 0.3382.

In steps 2 and 3 (table 9) we examine the capability of PHRQPITZ to perform calculations in invariant systems by irreversibly adding 0.1 and 1.0 moles of sea salt to pure water and again equilibrating with the same set of minerals. Comparison of the solution compositions from steps 2 and 3 with that from step 1 shows that all three are identical, as expected. The required mineral mass transfers are summarized under "PHASE BOUND-ARIES".


```
Test Problem 2: Sea Water Invariant Point (equilibration with reaction).
0130020000 3 7
                    0.0
SOLUTION 1
Pure water
                    4.0
0 0 0
          7.0
                             25.0
                                        1.0
MINERALS
ANHYDRIT
                    6.00
                           -4.362
          2
                                                 1
  4
          1.000
                16
                        1.000
422.950
          0.0
                       -18431.
                                   -147.708
BISCHOFI
          3
                    0.00 4.455
                                                 1
  5
          1.000
                14
                        2,000 3
                                       6.000
3.524
           0.0
                       277.6
CARNALLI
          4
                            4.330
                    0.00
                                                      6.000
  7
          1.000
                        1.000 14
                                       3.000
                                               3
HALITE
                            1.570
          2
                     0.00
          1.000 14
  6
                        1.000
-713.4616
          -.1201241
                       37302.21
                                   262.4583
                                               -2106915.
KIESERIT
           3
                     6.00 -0.123
                                                 0
          1.000
  5
                       1.000 3
                                       1.000
                16
MAGNESIT
                    4.00
                           -7.834
                                      -6.169
                                                 0
          2
                        1.000
  5
          1.000
               15
PCO2
           1
                     4.0
                           -1.468
                                      -4.776
                                                 1
                                                           -3.5
 35 1.0
           0.01985076 -6919.53
108.3865
                                   -40.45154
                                                669365.0
STEPS
                    1.0
0.
          . 1
REACTION
  4.186
           0.0
                      5.976
                               0.0
                                          68.567
                                                   0.
                                                              7.181
                                                                      0.
                               4.
  149.958
                     15.043
                                         16.514
                                                   6.
           0.
END
```

			,		
Table 9	- Listing o	of printout	from test p	roblem 2	

DATA READ FROM DISK

```
ELEMENTS
SPECIES
LOOK MIN
MEAN GAM
1Test Problem 2: Sea Water Invariant Point (equilibration with reaction).
0130020000 3 7
                    0.00000
SOLUTION 1
Pure water
           7.00
                    4.00
                            25.0
                                    1.00
 0 0 0
MINERALS
ANHYDRIT
               6.0 -4.4 0.00
                                                         0.000
          2
                                       1
     1.00
               16 1.00
  4.2295E+02 0.0000E-01 -1.8431E+04 -1.4771E+02 0.0000E-01
                                 0.00
                                                         0.000
BISCHOFI 3
               0.00
                        4.5
                                            1
      1.00
               14 2.00
                            3
                                 6.00
  3.5240E+00 0.0000E-01 2.7760E+02 0.0000E-01 0.0000E-01
CARNALLI 4
               0.00
                                 0.00
                         4.3
                                            0
                                                         0.000
                5 1.00
   7 1.00
                         14
                                 3.00
                                           3 6.00
HALITE
        2
               0.00
                         1.6
                                 0.00
                                                         0.000
                                            1
   6
      1.00
               14
                    1.00
 -7.1346E+02 -1.2012E-01 3.7302E+04 2.6246E+02 -2.1069E+06
KIESERIT 3
               6.0 -0.12
                                0.00
                                            0
                                                         0.000
               16 1.00
   5 1.00
                                 1.00
MAGNESIT 2
                4.0
                        -7.8
                                -6.2
                                            0
                                                         0.000
   5
      1.00
               15 1.00
PCO2
                4.0
                                 -4.8
                      -1.5
                                                         -3.500
       1.00
  1.0839E+02 1.9851E-02 -6.9195E+03 -4.0452E+01 6.6936E+05
          0
              0.00
                       0.00 0.00
                                            0
                                                         0.000
STEPS
 0.000
          0.100 1.00
REACTION
             0.000 5 0.976
   4
      0.186
                               0.000 6 8.567
                                                 0.000
                                                        7 0.181
                                                                  0.00
      9.958
              0.000 15 0.043
                               4.000 16 0.514 6.000
1SOLUTION NUMBER 1
Pure water
```

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

PURE WATER

PH = 6.9990

ACTIVITY H20 = 1.0000

OSMOTIC COEFFICIENT = 0.9999

IONIC STRENGTH = 0.0000

TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9971 G/CC ELECTRICAL BALANCE = -2.2785D-19

TOTAL ALKALINITY = 1.0027D-07

ITERATIONS = 5

DISTRIBUTION OF SPECIES

					UNS	CALED	UNSC	ALED
I	SPECIES	Z	MOLALITY	LOG MOLA	L ACTIVIT	Y LOG ACT	GAMMA	LOG GAM
1	H+	1.0	1.003E-07	-6.999	1.002E-0	7 -6.999	9.996E-01	0.000
3	H20	0.0	1.000E+00	0.000	1.000E+0	0.000	1.000E+00	0.000
31	OH-	-1.0	1.003E-07	-6.999	1.002E-0	7 -6.999	9.996E-01	0.000
					UNSCALED	UNSCALED		
		SPECI	ES TOTA	L MOL	ACTIVITY	TOTAL GAM	MA	
		H+	1.00	2 7 D-07	1.0023D-07	9.9963D-0	01	

OH- 1.0027D-07 1.0023D-07 9.9963D-01

1STEP NUMBER 1

0-----

O 0.000D-01 MOLES OF REACTION HAVE BEEN ADDED.

REACTION IS:

0.186000	MOLES	OF	CA	VALENCE =	0.000
0.976000	MOLES	OF	MG	VALENCE =	0.000
8.567000	MOLES	OF	NA	VALENCE =	0.000
0.181000	MOLES	OF	K	VALENCE =	0.000
9.958000	MOLES	OF	CL	VALENCE =	0.000
0.043000	MOLES	OF	С	VALENCE =	4.000
0.514000	MOLES	OF	S	VALENCE =	6.000

TOTAL MOLALITIES OF ELEMENTS

MOLALITY LOG MOLALITY

PURE WATER

ELEMENT

----PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	9.307528D-04	-4.3617	-4.3617	0.0000
BISCHOFI	5.651543D+00	4.4551	4.4551	0.0000
CARNALLI	2.151592D-02	4.3300	4.3300	0.0000
HALITE	9.313089D-02	1.5700	1.5700	0.0000
KIESERIT	6.246533D-02	-0.1230	-0.1230	0.0000
MAGNESIT	2.080462D-04	-7.834 0	-7.8340	0.0000
PCO2	-1.508047D-04	-4.9679	-1.4679	-3.5000

* NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-4.3617	-4.3617	0.0000
ARAGONIT	-12.5435	-8.2195	-4.3241
ARCANITE	-7.1823	-1.7760	-5.4063
BISCHOFI	4.4551	4.4551	0.0000
BLOEDITE	-5.3276	-2.3470	-2.9806
BRUCITE	-14.6562	-10.8840	-3.7722
BURKEITE	-19.5583	-0.7720	-18.7863
CALCITE	-12.5435	-8.4062	-4.1373
CARNALLI	4.3300	4.3300	0.0000
DOLOMITE	-20.3775	-17.0830	-3.2945
EPSOMITE	-2.9479	-1.8809	-1.0670
GAYLUSSI	-26.8716	-9.4210	-17.4506
GLASERIT	-12.6695	-3.8030	-8.8665
GLAUBERI	-8.1539	-5.2450	-2.9089
GYPSUM	- 5.3033	-4.5805	-0.7228
HALITE	1.5700	1.5700	0.0000
HEXAHYDR	-2.4771	-1.6346	-0.8425
KAINITE	-1.1897	-0.1930	-0.9967
KALICINI	-18.7398	-10.0580	-8.6818
KIESERIT	-0.1230	-0.1230	0.0000
LABILE S	-12.8877	-5.6720	-7.2157
LEONHARD	-1.5354	-0.8870	-0.6484
LEONITE	-8.7178	-3.9790	-4.7388
MAGNESIT	-7.8340	-7.8340	0.0000
MIRABIL	-8.5003	-1.2135	-7.2868
MISENITE	-70.5302	-10.8060	-59.7242
NAHCOLIT	-17.0447	-10.7420	-6.3027
NATRON	-16.6821	-0.8250	-15.8571
NESQUEHO	-9.2464	-5.1670	-4.0794
PCO2	-4.9679	-1.4679	-3.5000
PENTAHYD	-2.0063	-1.2850	-0.7213
PIRSSONI	-25.4591	-9.2340	-16.2251
POLYHALI	-16.4995	-13.7440	-2.7555
PORTLAND	-19.3657	-5.1900	-14.1757
SCHOENIT	-9.6594	-4.3280	-5.3314

SYLVITE	-0.1251	0.8998	-1.0249
SYNGENIT	-12.0148	-7.4480	-4.5668
TRONA	-29,9603	-11.3840	-18.5763

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	9.307528D-04	-3.0312
MG	5.735732D+00	0.7586
NA	9.313089D-02	-1.0309
K	2.151592D-02	-1.6672
CL	1.146076D+01	1.0592
C	5.724154D-05	-4.2423
S	6.339608D-02	-1.1979

----DESCRIPTION OF SOLUTION----

PH = 6.0119

ACTIVITY H20 = 0.3382

OSMOTIC COEFFICIENT = 3.4633

IONIC STRENGTH = 17.3873 TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9971 G/CC

ELECTRICAL BALANCE = 2.6802D-10

TOTAL ALKALINITY = 4.1616D-04

ITERATIONS = 66

DISTRIBUTION OF SPECIES

UNSCALED **UNSCALED SPECIES** Z MOLALITY LOG MOLAL ACTIVITY LOG ACT GAMMA LOG GAM 1.0 5.297E-08 -7.276 9.730E-07 -6.012 1.837E+01 1.264 1 H+ 3 H20 0.0 3.382E-01 -0.4713.382E-01 -0.471 1.000E+00 0.000 4 CA+2 2.0 9.308E-04 -2.452 3.796E+00 0.579 -3.031 3.533E-03 5 MG+2 1.810E+02 2.258 3.156E+01 1.499 2.0 5.735E+00 0.759 6 NA+ 1.0 9.313E-02 -1.031 1.145E-01 -0.941 1.230E+00 0.090

7 K+ 1.0 2.152E-02 -1.6672.311E-03 -2.6361.074E-01 -0.96914 CL--1.0 1.146E+01 1.059 3.245E+02 2.511 2.831E+01 1.452 15 CO3-2 -2.0 -6.8395.590E-04 1.448E-07 8.097E-11 -10.092 -3.25316 SO4-2 -2.0 6.340E-02 -1.198 1.231E-02 -1.910 1.941E-01 -0.71231 OH--1.0 4.868E-08 -7.313 3.492E-09 -8.457 7.174E-02 -1.144

34 HCO3- -1.0 4.325E-05 -4.364 1.721E-06 -5.764 3.979E-02 -1.400
35 H2CO3 0.0 1.431E-06 -5.844 1.077E-05 -4.968 7.523E+00 0.876

40 HSO4-	-1.0	1.462E-08	-7.835	1.141E-06	-5.943	7.805E+01	1.892
76 CACO3	0.0	4.053E-10	-9.392	4.053E-10	-9.392	1.000E+00	0.000
85 MGOH+	1.0	3.477E-04	-3.459	9.767E-05	-4.010	2.809E-01	-0.551
86 MGC03	0.0	1 242E-05	-4 906	1 242E-05	-4.906	1.000E+00	0.000

SPECIES	TOTAL MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAMMA
H+	6.7585D-08	9.7296D-07	1.4396D+01
CA+2	9.3075D-04	3.5331D-03	3.7959D+00
MG+2	5.7357D+00	1.8099D+02	3.1555D+01
NA+	9.3131D-02	1.1451D-01	1.2296D+00
K+	2.1516D-02	2.3108D-03	1.0740D-01
CL-	1.1461D+01	3.2445D+02	2.8310D+01
C03-2	1.2564D-05	8.0973D-11	6.4446D-06
S04-2	6.3396D-02	1.2307D-02	1.9413D-01
OH-	3.4778D-04	3.4921D-09	1.0041D-05
HC03-	4.3246D-05	1.7206D-06	3.9787D-02
H2C03	1.4310D-06	1.0766D-05	7.5233D+00

---- MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
CACL2	1.4490D+01
CASO4	8.5843D-01
CACO3	4.9460D-03
CA(OH)2	7.2604D-04
MGCL2	2.9353D+01
MGSO4	2.4750D+00
MGCO3	1.4260D-02
MG(0H)2	1.4708D-03
NACL	5.8999D+00
NA2SO4	6.6455D-01
NAHCO3	2.2118D-01
NA2CO3	2.1358D-02
NAOH	3.5137D-03
KCL	1.7437D+00
K2S04	1.3083D-01
KHCO3	6.5370D-02
K2C03	4.2047D-03
KOH	1.0385D-03
HCL	2.0188D+01
H2S04	3.4266D+00

1STEP NUMBER 2

0-----

O 1.000D-01 MOLES OF REACTION HAVE BEEN ADDED.

REACTION IS:

8.567000	MOLES	OF	NA	VALENCE =	:	0.000
0.181000	MOLES	OF	K	VALENCE =	:	0.000
9.958000	MOLES	OF	CL	VALENCE =	:	0.000
0.043000	MOLES	OF	С	VALENCE =	:	4.000
0.514000	MOLES	OF	S	VALENCE =	:	6.000

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	1.860000D-02	-1.7305
MG	9.760000D-02	-1.0106
NA	8.567000D-01	-0.0672
K	1.810000D-02	-1.7423
CL	9.958000D-01	-0.0018
С	4.30000D-03	-2.3665
S	5.140000D-02	-1.2890

----PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-1.766925D-02	-4.3617	-4.3617	0.0000
BISCHOFI	5.609147D+00	4.4551	4.4551	0.0000
CARNALLI	3.415878D-03	4.3300	4.3300	0.0000
HALITE	-7.635695D-01	1.5700	1.5700	0.0000
KIESERIT	2.966496D-02	-0.1230	-0.1230	0.0000
MAGNESIT	-4.091954D-03	-7.8340	-7.8340	0.0000
PCO2	-1.508049D-04	-4.9679	-1.4679	-3.5000

^{*} NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

---- LOOK MIN IAP ----

ANHYDRIT -4.3617 -4.3617 0.0000 ARAGONIT -12.5435 -8.2195 -4.3241 ARCANITE -7.1823 -1.7760 -5.4063 BISCHOFI 4.4551 4.4551 0.0000 BLOEDITE -5.3276 -2.3470 -2.9806 BRUCITE -14.6562 -10.8840 -3.7722 BURKEITE -19.5583 -0.7720 -18.7863 CALCITE -12.5435 -8.4062 -4.1373 CARNALLI 4.3300 4.3300 0.0000 DOLOMITE -20.3775 -17.0830 -3.2945 EPSOMITE -2.9479 -1.8809 -1.0670	PHASE	LOG IAP	LOG KT	LOG IAP/KT
GAYLUSSI -26.8716 -9.4210 -17.4506 GLASERIT -12.6695 -3.8030 -8.8665	ARAGONIT ARCANITE BISCHOFI BLOEDITE BRUCITE BURKEITE CALCITE CARNALLI DOLOMITE EPSOMITE GAYLUSSI	-12.5435 -7.1823 4.4551 -5.3276 -14.6562 -19.5583 -12.5435 4.3300 -20.3775 -2.9479 -26.8716	-8.2195 -1.7760 4.4551 -2.3470 -10.8840 -0.7720 -8.4062 4.3300 -17.0830 -1.8809 -9.4210	-4.3241 -5.4063 0.0000 -2.9806 -3.7722 -18.7863 -4.1373 0.0000 -3.2945 -1.0670 -17.4506

9 1520	E OliEO	2 0080
	-	-2.9089
		-0.7228
1.5700	1.5700	0.0000
-2.4771	-1.6346	-0.8425
-1.1897	-0.1930	-0.9967
-18.7398	-10.0580	-8.6818
-0.1230	-0.1230	0.0000
-12.8877	-5.6720	-7.2157
-1.5354	-0.8870	-0.6484
-8.7178	-3.9790	-4.7388
-7.8340	-7.8340	0.0000
-8.5003	-1.2135	-7.2868
-70.5302	-10.8060	-59.7242
-17.0447	-10.7420	-6.3027
-16.6822	-0.8250	-15.8572
-9.2464	-5.1670	-4.0794
-4.9679	-1.4679	-3.5000
-2.0063	-1.2850	-0.7213
-25.4591	-9.2340	-16.2251
-16.4995	-13.7440	-2.7555
-19.3657	-5.1900	-14.1757
-9.6594	-4.3280	-5.3314
-0.1251	0.8998	-1.0249
-12.0148	-7.4480	-4.5668
-29.9604	-11.3840	-18.5764
	-1.1897 -18.7398 -0.1230 -12.8877 -1.5354 -8.7178 -7.8340 -8.5003 -70.5302 -17.0447 -16.6822 -9.2464 -4.9679 -2.0063 -25.4591 -16.4995 -19.3657 -9.6594 -0.1251 -12.0148	-5.3033 -4.5805 1.5700 1.5700 -2.4771 -1.6346 -1.1897 -0.1930 -18.7398 -10.0580 -0.1230 -0.1230 -12.8877 -5.6720 -1.5354 -0.8870 -8.7178 -3.9790 -7.8340 -7.8340 -8.5003 -1.2135 -70.5302 -10.8060 -17.0447 -10.7420 -16.6822 -0.8250 -9.2464 -5.1670 -4.9679 -1.4679 -2.0063 -1.2850 -25.4591 -9.2340 -16.4995 -13.7440 -19.3657 -5.1900 -9.6594 -4.3280 -0.1251 0.8998 -12.0148 -7.4480

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	9.307534D-04	-3.0312
MG	5.735736D+00	0.7586
NA	9.313049D-02	-1.0309
K	2.151588D-02	-1.6672
CL	1.146077D+01	1.0592
С	5.724158D-05	-4.2423
S	6.339571D-02	-1.1979

----DESCRIPTION OF SOLUTION----

PH = 6.0119

ACTIVITY H20 = 0.3382

OSMOTIC COEFFICIENT = 3.4633

IONIC STRENGTH = 17.3873

TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9971 G/CC

ELECTRICAL BALANCE = -7.8562D-11 TOTAL ALKALINITY = 4.1616D-04

ITERATIONS = 26

DISTRIBUTION OF SPECIES

					UNSCA	LED	UNSC	ALED
I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
4	*1.	1.0	E 2000 00	g 0g(0 5305 05	(040	4 0000 04	4 061
	H+	1.0	5.297E-08	-7.276	9.730E-07	-6.012	1.837E+01	1.264
3	H20	0.0	3.382E-01	-0.471	3.382E-01	-0.471	1.000E+00	0.000
4	CA+2	2.0	9.308E-04	-3.031	3.533E-03	-2.452	3.796E+00	0.579
5	MG+2	2.0	5.735E+00	0.759	1.810E+02	2.258	3.156E+01	1.499
6	NA+	1.0	9.313E-02	-1.031	1.145E-01	-0.941	1.230E+00	0.090
7	K+	1.0	2.152E-02	-1.667	2.311E-03	-2.636	1.074E-01	-0.969
14	CL-	-1.0	1.146E+01	1.059	3.245E+02	2.511	2.831E+01	1.452
15	CO3-2	-2.0	1.448E-07	-6.839	8.097E-11	-10.092	5.590E-04	-3.253
16	S04-2	-2.0	6.340E-02	-1.198	1.231E-02	-1.910	1.941E-01	-0.712
•	OH-	-1.0	4.868E-08	-7.313	3.492E-09	-8.457	7.174E-02	-1.144
_	HCO3-	-1.0	4.325E-05	-4.364	1.721E-06	-5.764	3.979E-02	-1.400
35	H2C03	0.0	1.431E-06	-5.844	1.077E-05	-4.968	7.523E+00	0.876
40	HS04-	-1.0	1.462E-08	-7.8 35	1.141E-06	-5.943	7.805E+01	1.892
76	CACO3	0.0	4.053E-10	-9.392	4.053E-10	-9.392	1.000E+00	0.000
85	MGOH+	1.0	3.477E-04	-3.459	9.767E-05	-4.010	2.809E-01	-0.551
86	MGCO3	0.0	1.242E-05	-4.906	1.242E-05	-4.906	1.000E+00	0.000

SPECIES	TOTAL MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAMMA
H+	6. 758 5D-08	9.7296D-07	1.4396D+01
CA+2	9.3075D-04	3.5331D-03	3.7959D+00
MG+2	5.7357D+00	1.8099D+02	3.1555D+01
NA+	9.3130D-02	1.1451D-01	1.2296D+00
K+	2.1516D-02	2.3108D-03	1.0740D-01
CL-	1.1461D+01	3.2446D+02	2.8310D+01
CO3-2	1.2564D-05	8.0972D-11	6.4445D-06
S04-2	6.3396D-02	1.2307D-02	1.9413D-01
OH-	3.4779D-04	3.4921D-09	1.0041D-05
HCO3-	4.3246D-05	1.7206D-06	3.9787D-02
H2C03	1.4310D-06	1.0766D-05	7.5233D+00

--- MEAN ACTIVITY COEFFICIENT ---

FORMULA	MEAN GAMMA
CACL2	1.4490D+01
CASO4	8.5843D-01
CACO3	4.9460D-03
CA(OH)2	7.2604D-04
MGCL2	2.9353D+01
MGSO4	2.4750D+00
MGCO3	1.4260D-02
MG(OH)2	1.4708D-03

NACL	5.8999D+00
NA2SO4	6.6455D-01
NAHCO3	2.2118D-01
NA2CO3	2.1358D-02
NAOH	3.5137D-03
KCL	1.7437D+00
K2S04	1.3083D-01
KHCO3	6.5369D-02
K2C03	4.2047D-03
KOH	1.0385D-03
HCL	2.0188D+01
H2S04	3.4266D+00

1STEP NUMBER 3

0-----

O 1.000D+00 MOLES OF REACTION HAVE BEEN ADDED.

REACTION IS:

0.186000	MOLES	OF	CA	VALENCE	=	0.000
0.976000	MOLES	OF	MG	VALENCE	=	0.000
8.567000	MOLES	OF	NA	VALENCE	=	0.000
0.181000	MOLES	OF	K	VALENCE	=	0.000
9.958000	MOLES	OF	CL	VALENCE	=	0.000
0.043000	MOLES	OF	С	VALENCE	=	4.000
0.514000	MOLES	OF	S	VALENCE	=	6.000

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY	
CA	1.860000D-01	-0.7305	
MG	9.760000D-01	-0.0106	
NA	8.567000D+00	0.9328	
K	1.810000D-01	-0.7423	
CL	9.958000D+00	0.9982	
С	4.30000D-02	-1.3665	
S	5.140000D-01	-0.2890	

----PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-1.850692D-01	-4.3617	-4.3617	0.0000
BISCHOFI	5.227546D+00	4.4551	4.4551	0.0000
CARNALLI	-1.594841D-01	4.3300	4.3300	0.0000
HALITE	-8.473869D+00	1.5700	1.5700	0.0000
KIESERIT	-2.655349D-01	-0.1230	-0.1230	0.0000
MAGNESIT	-4.279195D-02	-7.83 40	-7.8340	0.0000
PCO2	-1.508048D-04	-4.9679	-1.4679	-3.5000

* NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-4.3617	-4.3617	0.0000
ARAGONIT	-12.5435	-8.2195	-4.3241
ARCANITE	-7. 1823	-1.7760	-5.4063
BISCHOFI	4.4551	4.4551	0.0000
BLOEDITE	- 5.3276	-2.3470	-2.9806
BRUCITE	-14.6562	-10.8840	-3.7722
BURKEITE	-19.5583	-0.7720	-18.7863
CALCITE	-12.5435	-8.4062	-4.1373
CARNALLI	4.3300	4.3300	0.0000
DOLOMITE	-20.3775	-17.0830	-3.2945
EPSOMITE	-2.9479	-1.8809	-1.0670
GAYLUSSI	-26.8716	-9.4210	-17.4506
GLASERIT	-12.6695	-3.8030	-8.8665
GLAUBERI	-8.1539	-5.2450	-2.9089
GYPSUM	- 5.3033	-4.5805	-0.7228
HALITE	1.5700	1.5700	0.0000
HEXAHYDR	-2.4771	-1.6346	-0.8425
KAINITE	-1.1897	-0.1930	-0.9967
KALICINI	-18.7398	-10.0580	-8.6818
KIESERIT	-0.1230	-0.1230	0.0000
LABILE S	-12.8877	-5.6720	-7.2157
LEONHARD	-1.5354	-0.8870	-0.6484
LEONITE	-8.7178	-3.9790	-4.7388
MAGNESIT	-7.8340	-7.8340	0.0000
MIRABIL	-8. 5003	-1.2135	-7.2868
MISENITE	-70.5302	-10.8060	- 59. 7 242
NAHCOLIT	-17.0447	-10.7420	-6.3027
NATRON	-16.6821	-0.8250	-15.8571
NESQUEHO	-9.2464	- 5.1670	-4.0794
P C 02	-4.9679	-1.4679	-3.5000
PENTAHYD	-2.0063	-1.2850	-0.7213
PIRSSONI	-25.4591	-9.2340	-16.2251
POLYHALI	-16.4995	-13.7440	- 2.7555
PORTLAND	-19.3657	-5.1900	-14.1757
SCHOENIT	-9.6594	-4.3280	-5.3314
SYLVITE	-0.1251	0.8998	-1.0249
SYNGENIT	-12.0148	-7.4480	-4.5668
TRONA	-29.9603	-11.3840	-18.5763

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	9.307531D-04	-3.0312

MG	5.735735D+00	0.7586
NA	9.313064D-02	-1.0309
K	2.151589D-02	-1.6672
CL	1.146077D+01	1.0592
С	5.724155D-05	-4.2423
S	6.339584D-02	-1.1979

----DESCRIPTION OF SOLUTION----

PH = 6.0119

ACTIVITY H20 = 0.3382

OSMOTIC COEFFICIENT = 3.4633

IONIC STRENGTH = 17.3873

TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM
DENSITY OF H20 = 0.9971 G/CC

ELECTRICAL BALANCE = 1.1675D-10

TOTAL ALKALINITY = 4.1616D-04

ITERATIONS = 23

DISTRIBUTION OF SPECIES

					UNSCA	ALED	UNSC	ALED
I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
								4 664
1	H +	1.0	5.297E-08	-7.276	9.730E-07	-6.012	1.837E+01	1.264
3	H 2 O	0.0	3.382E-01	-0.471	3.382E-01	-0.471	1.000E+00	0.000
4	CA+2	2.0	9.308E-04	-3.031	3.5 33E-03	-2.452	3.796E+00	0.579
5	MG+2	2.0	5.735E+00	0.759	1.810E+02	2.258	3.156E+01	1.499
6	NA+	1.0	9.313E-02	-1.031	1.145E-01	-0.941	1.230E+00	0.090
7	K+	1.0	2.152E-02	-1.667	2.311E-03	-2.636	1.074E-01	-0.969
14	CL-	-1.0	1.146E+01	1.059	3.245E+02	2.511	2.831E+01	1.452
15	CO3-2	-2.0	1.448E-07	-6.839	8.097E-11	-10.092	5.590E-04	-3.253
16	S04-2	-2.0	6.340E-02	-1.198	1.231E-02	-1.910	1.941E-01	-0.712
31	OH-	-1.0	4.868E-08	-7.313	3.492E-09	-8.457	7.174E-02	-1.144
34	HCO3-	-1.0	4.325E-05	-4.364	1. 7 21E-06	-5.764	3.979E-02	-1.400
35	H2CO3	0.0	1.431E-06	-5.844	1.077E-05	-4.968	7.523E+00	0.876
40	HS04-	-1.0	1.462E-08	-7.83 5	1.141E-06	-5.943	7.805E+01	1.892
76	CACO3	0.0	4.053E-10	-9.392	4.053E-10	-9.392	1.000E+00	0.000
85	MGOH+	1.0	3.477E-04	-3.459	9.767E-05	-4.010	2.809E-01	-0.551
86	MGC03	0.0	1.242E-05	-4.906	1.242E-05	-4.906	1.000E+00	0.000

SPECIES	TOTAL MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAMMA
H+	6.7585D-08	9.7296D-07	1.4396D+01
C/+2	9.3075D-04	3.5331D-03	3.7959D+00
MG+2	5.7357D+00	1.8099D+02	3.1555D+01

NA+	9.3131D-02	1.1451D-01	1.2296D+00
K+	2.1516D-02	2.3108D-03	1.0740D-01
CL-	1.1461D+01	3.2446D+02	2.8310D+01
C03-2	1.2564D-05	8.0972D-11	6.4445D-06
S04-2	6.3396D-02	1.2307D-02	1.9413D-01
OH-	3.4779D-04	3.4921D-09	1.0041D-05
HCO3-	4.3246D-05	1.7206D-06	3.9787D-02
H2C03	1.4310D-06	1.0766D-05	7.5233D+00

---- MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
CACL2	1.4490D+01
CASO4	8.5843D-01
CACO3	4.9460D-03
CA(OH)2	7.2604D-04
MGCL2	2.9353D+01
MGSO4	2.4750D+00
MGCO3	1.4260D-02
MG(OH)2	1.4708D-03
NACL	5.8999D+00
NA2SO4	6.6455D-01
NAHCO3	2.2118D-01
NA2CO3	2.1358D-02
NAOH	3.5137D-03
KCL	1.7437D+00
K2S04	1.3083D-01
KHCO3	6.5369D-02
K2C03	4.2047D-03
KOH	1.0385D-03
HCL	2.0188D+01
H2S04	3.4266D+00

Test problem 3: The anhydrite-gypsum phase boundary in the system NaCl-H₂O at 25 °Celsius

At constant temperature and pressure equilibrium between anhydrite and gypsum occurs at a single value of the activity of H₂O. This follows from the dehydration reaction

$$CaSO_4 \cdot 2H_2O = CaSO_4 + 2H_2O$$

where the solids are in their standard state and the equilibrium constant for the reaction is equal to the square of the activity of H_2O in solution. Using the standard free energy data of Harvie and others (1984), the anhydrite-gypsum phase boundary occurs at a water activity of 0.7773 at 25 °C and 1 atmosphere total pressure. In this test problem we locate the anhydrite-gypsum phase boundary in the NaCl- H_2O system. This is accomplished by adding NaCl as an irreversible reaction until equilibrium with both anhydrite and gypsum occurs. Adding an irreversible reaction to reach a phase boundary is a special case of PHRQPITZ (and PHREEQE) made possible by setting IOPT(3) to 6. The program then adds (or subtracts) the irreversible reaction to solution 1 until saturation is just reached with the first mineral listed under MINERALS input. This first mineral will have zero mass transfer but will be just saturated as the reaction reaches the phase boundary. The mass transfers of other minerals in MINERALS input will vary with extent of reaction.

The input file for test problem 3 is listed in table 10. The second line of input selects IOPT(3) = 6 and there are 2 components in the reaction (Na and Cl) defined under REAC-TION input. The starting solution is pure water. By placing anhydrite first under MINER-ALS input we find the amount of NaCl to be dissolved in water, while maintaining equilibrium with gypsum to just reach saturation with anhydrite (though no solid anhydrite is yet present). More advanced problems of this type can be set up to define reaction paths in general (see test problem 5 of Parkhurst and others (1980), and test problem 6 of this report).

The computed results are listed in table 11 showing that dissolution of 5.5737 moles of halite per kg H_2O is required to reach the gypsum-anhydrite phase boundary corresponding to a water activity of 0.7773. The solubility of gypsum in this NaCl solution is 48.01561 mmol per kg H_2O .


```
Test Problem 3: Find the anhydrite-gypsum phase boundary with NaCl addition.
0060020000 0 2
                     0.0
SOLUTION 1
pure water
          7.
                     4.0
 0 0 0
                              25.
                                          1.0
MINERALS
ANHYDRIT
           2
                     6.00
                             -4.362
                                                   1
  4
          1.000
                 16
                         1.000
422.950
                        -18431.
            0.0
                                    -147.708
GYPSUM
           3
                     6.00 -4.581
                                                   1
                 16 1.0
   4 1.0
                                 3 2.0
                        -4213.
90.318
            0.0
                                    -32.641
REACTION
   61.
            0.
                      141.
                                0.
END
```


DATA READ FROM DISK

ELEMENTS SPECIES LOOK MIN MEAN GAM 1Test Problem 3: Find the anhydrite-gypsum phase boundary with NaCl addition. 0060020000 0 2 0.00000 SOLUTION 1 pure water 0 0 0 7.00 4.00 25.0 1.00 MINERALS ANHYDRIT 2 6.0 -4.4 0.00 1 0.000 16 1.00 4 1.00 4.2295E+02 0.0000E-01 -1.8431E+04 -1.4771E+02 0.0000E-01 GYPSUM 3 6.0 -4.6 0.00 1 0.000 16 1.00 3 2.00 4 1.00 9.0318E+01 0.0000E-01 -4.2130E+03 -3.2641E+01 0.0000E-01 0.00 0.00 0.00 0 0.000 REACTION 6 1.000 0.000 14 1.000 0.000 1SOLUTION NUMBER 1 pure water

TOTAL MOLALITIES OF ELEMENTS

ELEMENT

MOLALITY LOG MOLALITY

PURE WATER

---- DESCRIPTION OF SOLUTION----

PH = 7.0000

ACTIVITY H20 = 1.0000

OSMOTIC COEFFICIENT = 0.9999

IONIC STRENGTH = 0.0000

TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H20 = 0.9971 G/CC

ELECTRICAL BALANCE = -4.6175D-10

TOTAL ALKALINITY = 1.0050D-07

ITERATIONS = 5

DISTRIBUTION OF SPECIES

					UNSCALED		UNSCALED	
I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	1.000E-07	-7.000	1.000E-07	-7.000	9.996E-01	0.000
3	H20	0.0	1.000E+00	0.000	1.000E+00	0.000	1.000E+00	0.000
31	OH-	-1.0	1.005E-07	-6.998	1.005E-07	-6.998	9.996E-01	0.000

SPECIES	TOTAL MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAMMA
H+	1.0004D-07	1.0000D-07	9.9963D-01
OH-	1.0050D-07	1.0046D-07	9.9963D-01

1STEP NUMBER 1

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

PURE WATER

----PHASE BOUNDARIES----

	PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
	ANHYDRIT	0.00000D-01	-4.3617	-4.3617	0.0000
_	GYPSUM	4.801542D-02	-4.5805	-4.5805	0.0000

- * NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.
- ** 5.573737D+00 MOLES OF REACTION HAVE BEEN ADDED TO THE SOLUTION TO REACH THE ANHYDRIT PHASE BOUNDARY.

REACTION IS:

1.000000 MOLES OF NA 1.000000 MOLES OF CL VALENCE = 0.000 VALENCE = 0.000

---- LOOK MIN IAP ----

PHASE LOG IAP LOG KT LOG IAP/KT

ANHYDRIT	-4.3617	-4.3617	0.0000
GLAUBERI	-5.9695	-5.2450	-0.7245
GYPSUM	-4.5805	-4.5805	0.0000
HALITE	1.4407	1.5700	-0.1293
LABILE S	-7.7962	-5.6720	-2.1242
MIRABIL	-2.7018	-1.2135	-1.4883
PORTLAND	-16.0990	-5.1900	-10.9090

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	4.801542D-02	-1.3186
NA	5.573737D+00	0.7461
CL	5.573737D+00	0.7461
S	4.801542D-02	-1.3186

----DESCRIPTION OF SOLUTION----

PH = 6.7203

ACTIVITY H20 = 0.7773

OSMOTIC COEFFICIENT = 1.2436

IONIC STRENGTH = 5.7658

TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9971 G/CC

ELECTRICAL BALANCE = -4.6196D-10

TOTAL ALKALINITY = 7.9772D-08

ITERATIONS = 28

DISTRIBUTION OF SPECIES

					UNSCA	LED	UNSC	ALED				
I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM				
1	H+	1.0	4.983E-08	-7.302	1.904E-07	-6.720	3.821E+00	0.582				
3	H20	0.0	7.773E-01	-0.109	7.773E-01	-0.109	1.000E+00	0.000				
4	CA+2	2.0	4.802E-02	-1.319	4.734E-02	-1.325	9.859E-01	-0.006				
6	NA+	1.0	5.574E+00	0.746	5.182E+00	0.715	9.298E-01	-0.032				
14	CL-	-1.0	5.574E+00	0.746	5.323E+00	0.726	9.549E-01	-0.020				
16	S04-2	-2.0	4.802E-02	-1.319	9.186E-04	-3.037	1.913E-02	-1.718				
31	OH-	-1.0	7.977E-08	-7.098	4.101E-08	-7.387	5.141E-01	-0.289				
40	HS04-	-1.0	2.948E-08	-7.531	1.666E-08	-7.778	5.653E-01	-0.248				

SPECIES	TOTAL MOL	ACTIVITY	TOTAL GAMMA
H+	7.9310D-08	1.9042D-07	2.4009D+00
CA+2	4.8015D-02	4.7336D-02	9.8586D-01
NA+	5.5737D+00	5.1824D+00	9.2979D-01
CL-	5.5737D+00	5.3226D+00	9.5494D-01
S04-2	4.8015D-02	9.1857D-04	1.9131D-02
OH-	7.9772D-08	4.1010D-08	5.1410D-01

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
CACL2	9.6514D-01
CASO4	1.3733D-01
CA(OH)2	6.3871D-01
NACL	9.4228D-01
NA2S04	2.5478D-01
NAOH	6.9138D-01
HCL	1.5142D+00
H2SO4	4.7954D-01

Test problem 4: Solubility with incremental temperature variation: halite-water system

PHRQPITZ does not allow the temperature to be varied incrementally without definition of a corresponding increment of reaction. Therefore, in order to calculate the solubility of a mineral at various temperatures, it is necessary to define a null irreversible reaction. In this problem we examine the solubility of halite in pure water between 0 and 300 °C. Halite is the only mineral in the PHRQPITZ data base for which the thermodynamic data are adequate for calculations beyond 100 °C. The input file is listed in table 12. IOPT(3) = 3 indicating that an irreversible reaction (null in this case) will be added at specified increments. IOPT(4) = 3 indicating that the temperature will be defined for each reaction step given under the keyword TEMP. There are 5 steps in the reaction (NSTEPS = 5) and 2 components in the reaction (NCOMPS = 2). We have arbitrarily defined the reaction to add NaCl (REACTION input) with the mass of NaCl added for each increment defined to be 0.0 (STEPS input). The starting solution is pure water and halite equilibrium is obtained by inclusion of the appropriate MINERALS data.

The computed results are listed in table 13. For each increment of null reaction a new temperature is defined and solution 1 (pure water) is equilibrated with halite at the new temperature. The computed solubilities all agree within 2 percent of values given in Pitzer, Peiper and Busey (1984) reflecting the accuracy of the fit of log K to these data (table 1). At temperatures greater than 100 °C the computed vapor pressure of pure water is identical to values given by Pitzer, Peiper and Busey (1984) reaching 84.7 atmospheres (85.5 bars) at 300 °C.

•					
ble 12	Line images	of the inpu	nt file to tes	t problem 4	

```
Test Problem 4: Solubility with incremental temperature variation: halite-water
0033020000 5 2
                    0.0
SOLUTION 1
Pure water
0 0 0
                    4.0
                              25.0
                                       1.0
           7.0
MINERALS
HALITE
          2
                    0.00
                           1.570
                                                 1
          1.000 14
                        1.000
  6
-713.4616
          -.1201241
                       37302.21
                                   262.4583
                                              -2106915.
TEMP
                   100.
                             200.
                                       300.
0.
         25.
STEPS
         0.
                   0.
                             0.
                                       ٥.
0.
REACTION
                     141.
   61.
           0.
                               0.
END
```

Table 13. -- Listing of printout from test problem 4

DATA READ FROM DISK

ELEMENTS SPECIES LOOK MIN MEAN GAM 1Test Problem 4: Solubility with incremental temperature variation: halite-water 0033020000 5 2 0.00000 SOLUTION 1 Pure water 4.00 25.0 1.00 0 0 0 7.00 MINERALS 1.6 0.00 1 HALITE 2 0.00 0.000 6 1.00 14 1.00 -7.1346E+02 -1.2012E-01 3.7302E+04 2.6246E+02 -2.1069E+06 0.00 0.00 0.00 0.000 0 TEMP 25.0 100. 200. 0.000 300. STEPS 0.000 0.000 0.000 0.000 0.000 REACTION 0.000 14 1.000 0.000 1.000 1SOLUTION NUMBER 1 Pure water

TOTAL MOLALITIES OF ELEMENTS

ELEMENT

MOLALITY LOG MOLALITY

PURE WATER

----DESCRIPTION OF SOLUTION----

7.0000 PH =

ACTIVITY H20 = 1.0000

OSMOTIC COEFFICIENT = 0.9999

> IONIC STRENGTH = 0.0000

> > TEMPERATURE = 25.0000

> > > PRESSURE = 1.0000 ATM

DENSITY OF H20 = 0.9971 G/CC ELECTRICAL BALANCE = -4.6175D-10

TOTAL ALKALINITY = 1.0050D-07

ITERATIONS = 5

ע	15	TR	BUJ	TON	OF.	SPECIES

					UNSCALED		UNSCALED	
I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	Н+	1.0	1.000E-07	-7.000	1.000E-07	-7.000	9.996E-01	0.000
	H20		1.000E+00	• • • • •	1.000E+00	•		0.000
31	OH-	-1.0	1.005E-07	-6.998	1.005E-07	-6.998	9.996E-01	0.000

SPECIES	TOTAL MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAMMA
H+	1.0004D-07	1.0000D-07	9.9963D-01
OH-	1.0050D-07	1.0046D-07	9.9963D-01

1STEP NUMBER 1

O 0.000D-01 MOLES OF REACTION HAVE BEEN ADDED.

REACTION IS:

0.00 = NEW TEMPERATURE (C).

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

PURE WATER

----PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
HALITE	6.093272D+00	1.5046	1.5046	0.0000

^{*} NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

---- LOOK MIN IAP ----

LOG IAP LOG KT LOG IAP/KT PHASE 1.5046 1.5046 0.0000 HALITE

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
NA	6.093272D+00	0.7849
CL	6.093272D+00	0.7849

----DESCRIPTION OF SOLUTION----

PH = 7.0322

ACTIVITY H20 = 0.7577

OSMOTIC COEFFICIENT = 1.2641

IONIC STRENGTH = 6.0933

TEMPERATURE = 0.0000

PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9998 G/CC ELECTRICAL BALANCE = -4.6168D-10

TOTAL ALKALINITY = 1.7906D-08

ITERATIONS = 24

DISTRIBUTION OF SPECIES

UNSCALED UNSCALED I SPECIES Z MOLALITY LOG MOLAL ACTIVITY LOG ACT GAMMA LOG GAM 1 H+ 1.0 1.744E-08 -7.758 9.284E-08 -7.032 5.322E+00 0.726 0.0 7.577E-01 -0.121 7.577E-01 -0.121 1.000E+00 0.000 1.0 6.093E+00 0.785 5.653E+00 0.752 9.278E-01 -0.033 3 H2O 6 NA+ 14 CL--1.0 6.093E+00 0.785 5.653E+00 0.752 9.278E-01 -0.033 31 OH--1.0 1.791E-08 -7.747 1.043E-08 -7.982 5.827E-01 -0.235

SPECIES	TOTAL MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAMMA
H+	1.7444D-08	9.2844D-08	5.3223D+00
NA+	6.0933D+00	5.6534D+00	9.2781D-01
CL-	6.0933D+00	5.6534D+00	9.2781D-01
OH-	1.7906D-08	1.0433D-08	5.8267D-01

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA MEAN GAMMA

NACL	9.2781D-01
NAOH	7.3526D-01
HCL	2.2222D+00

1STEP NUMBER 2

0-----

O 0.000D-01 MOLES OF REACTION HAVE BEEN ADDED.

REACTION IS:

25.00 = NEW TEMPERATURE (C).

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

PURE WATER

---PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
HALITE	6.099676D+00	1.5700	1.5700	0.0000

^{*} NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

---- LOOK MIN IAP ----

PHASE LOG IAP LOG KT LOG IAP/KT 1.5700 1.5700 0.0000 HALITE

TOTAL MOLALITIES OF ELEMENTS

MOLALITY LOG MOLALITY ELEMENT 6.099676D+00 0.7853 6.099676D+00 0.7853 NA CL

----DESCRIPTION OF SOLUTION----

PH = 6.5971

ACTIVITY H20 = 0.7546

OSMOTIC COEFFICIENT = 1.2813

IONIC STRENGTH = 6.0997

TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9971 G/CC

ELECTRICAL BALANCE = -4.6169D-10

TOTAL ALKALINITY = 5.5149D-08

ITERATIONS = 24

DISTRIBUTION OF SPECIES

					UNSCA	LED	UNSC	ALED
I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	5.469E-08	-7. 262	2.529E-07	-6.597	4.624E+00	0.665
3	H20	0.0	7.546E-01	-0.122	7.546E-01	-0.122	1.000E+00	0.000
6	NA+	1.0	6.100E+00	0.785	6.095E+00	0.785	9.993E-01	0.000
14	CL-	-1.0	6.100E+00	0.785	6.095E+00	0.785	9.993E-01	0.000
31	OH-	-1.0	5.515E-08	-7. 258	2.998E-08	-7.523	5.436E-01	-0.265

SPECIES	TOTAL MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAMMA
H+	5.4688D-08	2.5286D-07	4.6237D+00
NA+	6.0997D+00	6.0953D+ 0 0	9.9929D-01
CL-	6.0997D+00	6.0 95 3D+00	9.9929D-01
OH-	5.5149D-08	2.9980D-08	5.4361D-01

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
NACL	9.9929D-01
NAOH HCL	7.3704D-01 2.1495D+00

1STEP NUMBER 3

0-----

O 0.000D-01 MOLES OF REACTION HAVE BEEN ADDED.

REACTION IS:

100.00 = NEW TEMPERATURE (C).

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

PURE WATER

----PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
HALITE	6.624753D+00	1.5605	1.5605	0.0000

* NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

---- LOOK MIN IAP ----

PHASE LOG IAP LOG KT LOG IAP/KT
HALITE 1.5605 1.5605 0.0000

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
NA	6.624753D+00	0.8212
CL	6.624753D+00	0.8212

----DESCRIPTION OF SOLUTION----

PH = 5.6149

ACTIVITY H2O = 0.7442

OSMOTIC COEFFICIENT = 1.2375

IONIC STRENGTH = 6.6248

TEMPERATURE = 100.0000

PRESSURE = 1.0000 ATM
DENSITY OF H2O = 0.9584 G/CC
ELECTRICAL BALANCE = -3.8820D-10
TOTAL ALKALINITY = 6.6989D-07

ITERATIONS = 24

DISTRIBUTION OF SPECIES

					UNSCA	LED	UNSC	ALED
I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
_				6 a-1				
1	H+	1.0	6.695E-07	-6.174	2.427E-06	-5.615	3.626E+00	0.55 9
3	H20	0.0	7.442E-01	-0.128	7.442E-01	-0.128	1.000E+00	0.000
6	NA+	1.0	6.625E+00	0.821	6.029E+00	0.780	9.101E-01	-0.041
14	CL-	-1.0	6.625E+00	0.821	6.029E+00	0.780	9.101E-01	-0.041
31	OH-	-1.0	6.699E-07	-6.174	2.849E-07	-6.545	4.253E-01	-0.371

SPECIES	TOTAL MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAMMA
H+	6.6950D-07	2.4274D-06	3.6256D+00
NA+	6.6248D+00	6.0293D+00	9.1012D-01
CL-	6.6248D+00	6.0293D+00	9.1012D-01
OH-	6.6989D-07	2.8490D-07	4.2529D-01

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
NACL	9.1012D-01
NAOH HCL	6.2215D-01 1.8165D+00
1101	1.01070700

1STEP NUMBER 4 0----

O 0.000D-01 MOLES OF REACTION HAVE BEEN ADDED.

REACTION IS:

200.00 = NEW TEMPERATURE (C).

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

PURE WATER

----PHASE BOUNDARIES----

PHASE DELTA PHASE* LOG IAP LOG KT LOG IAP/KT
HALITE 7.837636D+00 1.2041 1.2041 0.0000

* NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

---- LOOK MIN IAP ----

PHASE LOG IAP LOG KT LOG IAP/KT
HALITE 1.2041 1.2041 0.0000

TOTAL MOLALITIES OF ELEMENTS

 ELEMENT
 MOLALITY
 LOG MOLALITY

 NA
 7.837636D+00
 0.8942

 CL
 7.837636D+00
 0.8942

----DESCRIPTION OF SOLUTION----

PH = 4.6777

ACTIVITY H20 = 0.7415

OSMOTIC COEFFICIENT = 1.0589

IONIC STRENGTH = 7.8376

TEMPERATURE = 200.0000

PRESSURE = 15.3333 ATM

DENSITY OF H20 = 0.8647 G/CC

ELECTRICAL BALANCE = -4.4288D-10

TOTAL ALKALINITY = 7.5880D-06

ITERATIONS = 27

DISTRIBUTION OF SPECIES

					UNSCA	LED	UNSC	ALED
I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	7.588E-06	-5.120	2.100E-05	-4.678	2.768E+00	0.442
3	H20	0.0	7.415E-01	-0.130	7.415E-01	-0.130	1.000E+00	0.000
6	NA+	1.0	7.838E+00	0.894	4.000E+00	0.602	5.103E-01	-0.292

14 CL-	-1.0	7.838E+00	0.894	4.000E+00	0.602	5.103E-01	-0.292
31 OH-	-1.0	7.588E-06	-5.120	1.472E-06	-5.832	1.940E-01	-0.712

SPECIES	TOTAL MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAMMA
H+	7.5876D-06	2.1002D-05	2.7680D+00
NA+	7.8376D+00	3.9997D+00	5.1032D-01
CL-	7.8376D+00	3.9997D+00	5.1032D-01
OH-	7.5880D-06	1.4718D-06	1.9397D-01

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
NACL	5.1032D-01
NAOH	3.1462D-01
HCL	1.1885D+00

1STEP NUMBER 5

0----

O 0.000D-01 MOLES OF REACTION HAVE BEEN ADDED.

REACTION IS:

1.000000 MOLES OF NA VALENCE = 0.000 1.000000 MOLES OF CL VALENCE = 0.000 300.00 = NEW TEMPERATURE (C).

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

PURE WATER

----PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
HALITE	1.020741D+01	0.2888	0.2888	0.0000

^{*} NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
HALITE	0.2888	0.2888	0.0000

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
NA	1.020741D+01	1.0089
CL	1.020741D+01	1.0089

----DESCRIPTION OF SOLUTION----

PH = 3.6159

ACTIVITY H20 = 0.7658

OSMOTIC COEFFICIENT = 0.7256

IONIC STRENGTH = 10.2075

TEMPERATURE = 300.0000

PRESSURE = 84.7091 ATM

DENSITY OF H2O = 0.7124 G/CC ELECTRICAL BALANCE = -6.5533D-10

TOTAL ALKALINITY = 1.0802D-04

ITERATIONS = 32

DISTRIBUTION OF SPECIES

					UNS	CALED	UNSC	ALED
I	SPECIES	Z	MOLALITY	LOG MOLA	L ACTIVITY	Y LOG ACT	GAMMA	LOG GAM
1	H+	1.0	1.080E-04	-3.967	2.421E-0	4 -3.616	2.242E+00	0.351
3	H20	0.0	7.658E-01	-0.116	7.658E-0	1 -0.116	1.000E+00	0.000
6	NA+	1.0	1.021E+01	1.009	1.394E+00	0.144	1.366E-01	-0.865
14	CL-	-1.0	1.021E+01	1.009	1.394E+00	0.144	1.366E-01	-0.865
31	OH-	-1.0	1.080E-04	-3.967	1.569E-0	6 -5.805	1.452E-02	-1.838
	•	SPECI	ES TOTA	L MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAM	MA	
		H+ NA+ CL-	1.02	02D-04 07D+01 07D+01	2.4214D-04 1.3944D+00 1.3944D+00	2.2417D+0 1.3660D-0 1.3661D-0	01	
		OH-	1.08	02D-04	1.5685D-06	1.4521D-0	02	

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
NACL	1.3660D-01
NAOH	4.4538D-02
HCL	5.5338D-01

Test problem 5: Fresh water - brine mixing in a closed system.

In this problem we use PHRQPITZ to calculate the solubility of calcite in mixtures of (1) a dilute water in equilibrium with calcite at log PCO₂ of -2.0 and (2) a sodium chloride brine in equilibrium with halite and calcite at log PCO₂ of -2.0. The mixing environment is assumed to be closed to CO₂. All calculations are at 25 °C. The problem is in 3 parts (table 14). The end-member waters are constructed in parts a and b by equilibrating pure water with calcite at a log PCO₂ of -2.0 (part a), and calcite-halite at log PCO₂ = -2.0 (part b). The final solution of part a is stored in solution 2 (IOPT(7)=2) and the final solution of part b is stored in solution 1 (IOPT(7)=1). In part c IOPT(3) is set to 1 selecting the mixing case and NSTEPS is 5 indicating that 5 mixtures will be solved. The fraction of solution 1 for each mixture is defined under STEPS input. Each mixture is equilibrated with calcite in a system closed to CO₂ gas. The results are listed in table 15.

Solution 2 (defined in part a) is representative of a dilute calcium bicarbonate ground water in equilibrium with calcite. Solution 1 is a hypothetical NaCl brine in equilibrium with calcite at the same PCO₂. The solubility of calcite is higher in the NaCl solution owing to the decrease in the mean activity coefficient of CaCO₃. Although both end-members are saturated with calcite, their mixtures are undersaturated and dissolve calcite owing to the non-linear variation in activity coefficients with concentration (table 15).


```
Test Problem 5 (part a): Calcite-CO2-H2O equilibrium at log PCO2 = -2.
0050022000 0 0
                     0.0
SOLUTION 1
Pure water
 0 0 0
           7.0
                     4.0
                               25.0
                                         1.0
MINERALS
CALCITE
                     4.00
                            -8.406
                                                   1
                  4 1.0
  15 1.0
-171.8329
            -.077993
                        2839.319
                                    71.595
PCO2
           1
                     4.0
                            -1.468
                                       -4.776
                                                   1
                                                             -2.
  35 1.0
108.3865
            0.01985076 -6919.53
                                    -40.45154
                                                  669365.0
END
Test Problem 5 (part b): Calcite-Halite-CO2-H2O system at log PCO2 = -2.
0050021000 0 0
                     0.0
SOLUTION 1
Pure water
 0 0 0
           7.0
                     4.0
                               25.0
                                          1.0
MINERALS
CALCITE
                     4.00
                            -8.406
                                                   1
           2
                  4 1.0
  15 1.0
            -.077993
-171.8329
                        2839.319
                                    71.595
                                       -4.776
                     4.0
PCO2
                            -1.468
                                                   1
                                                             -2.
  35 1.0
108.3865
            0.01985076 -6919.53
                                    -40.45154
                                                  669365.0
HALITE
                    0.00
                           1.570
                                                   1
   6
          1.000 14
                         1.000
-713.4616
           -.1201241
                        37302.21
                                    262.4583
                                                 -2106915.
END
Test Problem 5 (part c): Mix solns. 1 and 2 maintaining calcite saturation.
0010020000 5 0
                     0.0
MINERALS
                     4.00
                            -8,406
CALCITE
                                                   1
           2
                  4 1.0
  15 1.0
-171.8329
          -.077993
                        2839.319
                                    71.595
STEPS
 . 1
          .3
                    .5
                              .7
                                          .9
END
```

	ole 15 Listing of printout from test problem 5					
	ele 15 Listing of printout from test problem 5					
	ele 15 Listing of printout from test problem 5					
	ele 15 Listing of printout from test problem 5					
Table 15 Listing of printout from test problem 5		Γable 15 L	isting of printou	t from test pro	blem 5	

DATA READ FROM DISK

ELEMENTS SPECIES LOOK MIN **MEAN GAM** 1Test Problem 5 (part a): Calcite-CO2-H2O equilibrium at log PCO2 = -2. 0050022000 0 0 0.00000 SOLUTION 1 Pure water 0 0 0 7.00 4.00 25.0 1.00 MINERALS CALCITE 2 4.0 -8.4 0.00 1 0.000 4 1.00 15 1.00 -1.7183E+02 -7.7993E-02 2.8393E+03 7.1595E+01 0.0000E-01 1 PCO2 1 4.0 -1.5 -4.8 -2.000 35 1.00 1.0839E+02 1.9851E-02 -6.9195E+03 -4.0452E+01 6.6936E+05 0 0.00 0.00 0.00 0.000 1SOLUTION NUMBER 1 Pure water

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

PURE WATER

----DESCRIPTION OF SOLUTION----

PH = 7.0000

ACTIVITY H20 = 1.0000

OSMOTIC COEFFICIENT = 0.9999

IONIC STRENGTH = 0.0000

TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H20 = 0.9971 G/CC

ELECTRICAL BALANCE = -4.6175D-10

TOTAL ALKALINITY = 1.0050D-07

ITERATIONS = 5

DISTRIBUTION OF SPECIES

						UNS	CALED	UNSC	ALED
I	SPECIES	Z	MOLALI'	ry Log i	MOLAL	ACTIVIT	Y LOG ACT	GAMMA	LOG GAM
1	H+	1.0	1.000E	-07 -7	.00 0	1.000E-0	7 -7.000	9.996E-01	0.000
3	H20	0.0	1.000E-	+0 0 0.	.000	1.000E+0	0.000	1.000E+00	0.000
31	OH-	-1.0	1.005E	-07 -6	.998	1.005E-0	7 -6.998	9.996E-01	0.000
					U	NSCALED	UNSCALED		
		SPECI	ES To	OTAL MOL	A(CTIVITY	TOTAL GAM	1A	
		Н+	1	.0004D-0	7 1.0	0000D-07	9.9963D-0	01	
		OH-		.0 05 0D-0	•	0046D-07	9.9963D-0		

1STEP NUMBER 1

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

PURE WATER

----PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
CALCITE	1.741541D-03	-8.4062	-8.4062	0.0000
PCO2	2.071791D-03	-3.4679	-1.4679	-2.0000

^{*} NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ARAGONIT	-8.4062	-8.2195	-0.1868
CALCITE	-8.4062	-8.4062	0.0000
PCO2	-3.4679	-1.4679	-2.0000
PORTLAND	-16.2576	-5.1900	-11.0676

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	1.741541D-03	-2.7591
С	3.813332D-03	-2.4187

----DESCRIPTION OF SOLUTION----

PH = 7.3147

ACTIVITY H20 = 0.9999

OSMOTIC COEFFICIENT = 0.9576

IONIC STRENGTH = 0.0052

TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H20 = 0.9971 G/CC

ELECTRICAL BALANCE = 4.3136D-09

TOTAL ALKALINITY = 3.4831D-03 ITERATIONS = 10

DISTRIBUTION OF SPECIES

							UNS	CALED	UNSC	CALED
I	SPECIES	Z	MOLA	LITY	LOG M	OLAL	ACTIVIT	Y LOG ACT	GAMMA	LOG GAM
						_		_		
	H+	1.0		4E-08		278	4.845E-0	. •	9.188E-01	
3	H20	0.0	9.99	9E-01	0.	0 00	9.999E-0		1.000E+00	0.000
4	CA+2	2.0	1.73	6E-03	-2.	760	1.286E-0	3 -2.891	7.406E-01	-0.130
15	CO3-2	-2.0	4.25	1E-06	- 5.	372	3.052E-0	6 -5.515	7.181E-01	-0.144
31	OH-	-1.0	2.25	0E-07	-6.	648	2.073E-0	7 -6.683	9.214E-01	-0.036
34	HCO3-	-1.0	3.46	3E-03	-2.	461	3.230E-0	3 -2.491	9.327E-01	-0.030
35	H2C03	0.0	3.40	2E-04	-3.	468	3.405E-0	4 -3.468	1.001E+00	0.000
76	CACO3	0.0	5.56	0E-06	-5.	255	5.560E-0	6 -5.255	1.000E+00	0.000
						1	UNSCALED	UNSCALED)	
		SPECI	ES	TOTAL	L MOL	ı	ACTIVITY	TOTAL GAM	MA	
		H+		5.27	36D-08	4	.8455D-08	9.1882D-	01	
		CA+2		1.74	15D-03	1	.2857D-03	7.3826D-	01	
		C03-2		9.810	03D-06	3	.0523D-06	3.1113D-	01	
		OH-		2.24	99D-07	2	.0731D-07	9.2144D-	01	
		HC03-		3.46	33D-03	3	.2301D-03	-		
		H2C03		-	24D-04	_	.4045D-04	1.0006D+		
				-		Ĭ				

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA MEAN GAMMA

CACO3 4.7926D-01

CA(OH)2 8.5582D-01 1Test Problem 5 (part b): Calcite-Halite-CO2-H2O system at log PCO2 = -2. 0.00000 0050021000 0 0 SOLUTION 1 Pure water 0 0 0 7.00 4.00 25.0 1.00 MINERALS CALCITE 2 4.0 -8.4 0.00 1 0.000 4 1.00 15 1.00 -1.7183E+02 -7.7993E-02 2.8393E+03 7.1595E+01 0.0000E-01 PCO2 1 4.0 -1.5 -4.8 1 -2.000 35 1.00 1.0839E+02 1.9851E-02 -6.9195E+03 -4.0452E+01 6.6936E+05 HALITE 2 0.00 1.6 0.00 6 1.00 14 1.00 0.000 -7.1346E+02 -1.2012E-01 3.7302E+04 2.6246E+02 -2.1069E+06 0 0.00 0.00 0.00 0 0.000 1SOLUTION NUMBER 1 Pure water

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

PURE WATER

----DESCRIPTION OF SOLUTION----

PH = 7.0000

ACTIVITY H20 = 1.0000

OSMOTIC COEFFICIENT = 0.9999

IONIC STRENGTH = 0.0000

TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H20 = 0.9971 G/CC

ELECTRICAL BALANCE = -4.6175D-10

TOTAL ALKALINITY = 1.0050D-07

ITERATIONS = 5

DISTRIBUTION OF SPECIES

UNSCALED UNSCALED

I SPECIES Z MOLALITY LOG MOLAL ACTIVITY LOG ACT GAMMA LOG GAM

1 H+ 1.0 1.000E-07 -7.000 1.000E-07 -7.000 9.996E-01 0.000

3 H2O	0.0	1.000E+00	0.000	1.000E+00	0.000	1.000E+00	0.000
31 OH-	-1.0	1.005E-07	-6.998	1.005E-07	-6.998	9.996E-01	0.000

SPECIES	TOTAL MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAMMA
H+	1.0004D-07	1.0000D-07	9.9963D-01
OH-	1.0050D-07	1.0046D-07	9.9963D-01

1STEP NUMBER 1

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

PURE WATER

----PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
CALCITE PCO2	2.544505D-03 2.596886D-03	-8.4062 -3.4679	-8.4062 -1.4679	0.0000 -2.0000
HALITE	6.098571D+00	1.5700	1.5700	0.0000

^{*} NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ARAGONIT	-8.4062	-8.2195	-0.1 8 68
CALCITE	-8. 4062	-8.4062	0.0000
GAYLUSSI	-13.3763	-9.4210	-3.9553
HALITE	1.5700	1.5700	0.0000
NAHCOLIT	-12.3127	-10.7420	-1.5707
NATRON	-5.5818	-0.8250	-4.7568
PCO2	-3.4679	-1.4679	-2.0000
PIRSSONI	-13.0093	-9.2340	-3.7753
PORTLAND	-16.3799	-5.1900	-11.1899
TRONA	-16.9157	-11.3840	-5.5317

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	2.544505D-03	-2.5944
NA	6.098571D+00	0.7852
CL	6.098571D+00	0.7852
С	5.141390D-03	-2.2889

----DESCRIPTION OF SOLUTION----

PH = 7.1698

ACTIVITY H20 = 0.7545

OSMOTIC COEFFICIENT = 1.2813

IONIC STRENGTH = 6.1062

TEMPERATURE = 25.0000 PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9971 G/CC

ELECTRICAL BALANCE = -4.0491D-10 TOTAL ALKALINITY = 5.0890D-03

ITERATIONS = 24

DISTRIBUTION OF SPECIES

								U	nsc <i>i</i>	ALED	UNS	CALED
I SF	PECIES	Z	MOLA	LITY	LOG M	IOLAL	. A	CTIV	ITY	LOG ACT	GAMMA	LOG GAM
4 11.	_	1.0	4 1(6)	ID 00	7	92h	c	76 lin	^0	7 170	h 6100.00	٥ ((٦
1 H+		1.0		1E-08		834		764E		-7.170	4.619E+00	
3 H2		0.0		5E-01		122		545E		-0.122	1.000E+00	
4 CA	A+2	2.0		9E-03		595	3.	320E	-03	-2.479	1.308E+00	0.117
6 NA	A+	1.0	6.099	E+00	0.	785	6.	089E	+00	0.785	9.984E-01	-0.001
14 CL	L-	-1.0	6.099	9E+00	0.	785	6.	102E	+00	0.785	1.001E+00	0.000
15 CC	03-2	-2.0	4.86	3E-05	-4.	313	1.	182E	-06	-5.927	2.430E-02	-1.614
31 OF	-	-1.0	2.06	-		685		121E		-6.951	5.426E-01	-0.266
34 HC		-1.0	-)E-03		303		746E	-	-2.758	3.506E-01	-0.455
35 H2		0.0	•	3E-04		972		405E	_	-3.468	3.189E+00	
76 CA		0.0		DE-06	_	255	_	560E		-5.255	1.000E+00	
10 CF	HCOS	0.0	5.500)E-00	- 5.	299	٦.	JUUE	-00	-5.255	1.0005+00	0.000
							UNSC	ALED		UNSCALED)	
		SPECI	ES	TOTAL	L MOL		ACTI	VITY	7	TOTAL GAN	IM A	
		H+		1.464	44D-08	3 6	.763	8D-0	8	4.6187D+	-00	
		CA+2			45D-03			2D-0		1.3048D+		
		NA+			36D+00	_		8D+0		9.9840D-		
		CL-		_	36D+00			8D+0	-	1.0005D+		
		CO3-2		-	92D-05			00+0		2.1811D-		
				_								
		OH-		2.00	52D-07	, 1	. 120	6D-0	7	5.4261D-	·U 1	

HCO3-	4.9804D-03	1.7460D-03	3.5058D-01
H2C03	1.0676D-04	3.4046D-04	3.1888D+00

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
CACL2	1.0931D+00
CACO3	1.6870D-01
CA(OH)2	7.2696D-01
NACL	9.9947D-01
NAHCO3	5.9162D-01
NA2CO3	2.7910D-01
NAOH	7.3603D-01
HCI.	2 14070+00

1Test Problem 5 (part c): Mix solns. 1 and 2 maintaining calcite saturation. 0010020000 5 0 0.00000 MINERALS

CALCITE 2 4.0 -8.4 0.00 1 15 1.00 4 1.00 0.000 -1.7183E+02 -7.7993E-02 2.8393E+03 7.1595E+01 0.0000E-01

0 0.00 0.00 0.00 0 0.000 STEPS

1STEP NUMBER 1

O 0.100 = FRACTION OF SOLUTION 1. 0.900 = FRACTION OF SOLUTION 2.

0.100 0.300 0.500 0.700 0.900

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY	
CA	1.821837D-03	-2.7395	
NA	6.098571D-01	-0.2148	
CL	6.098571D-01	-0.2148	
С	3.946138D-03	-2.4038	

----PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
CALCITE	3.052849D-04	-8.4062	-8.4062	0.0000

^{*} NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ARAGONIT	-8.4 062	-8.2195	-0.1868
CALCITE	-8.4062	-8.4062	0.0000
GAYLUSSI	-14.3220	-9.4210	-4.9010
HALITE	-0.77 79	1.5700	-2.3479
NAHCOLIT	-13.3443	-10.7420	-2.6023
NATRON	-5. 9 600	-0.8250	-5.1350
PCO2	-4.1316	-1.4679	-2.6637
PIRSSONI	-14.2954	-9.2340	-5.0614
PORTLAND	-15.6028	-5.1900	-10.4128
TRONA	-19.2335	-11.3840	-7.8495

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	2.127122D-03	-2.6722
NA	6.098571D-01	-0.2148
CL	6.098571D-01	-0.2148
С	4.251423D-03	-2.3715

----DESCRIPTION OF SOLUTION----

PH = 7.8627

ACTIVITY H20 = 0.9798

OSMOTIC COEFFICIENT = 0.9228

IONIC STRENGTH = 0.6163

TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9971 G/CC

ELECTRICAL BALANCE = -4.6165D-10

TOTAL ALKALINITY = 4.2543D-03

ITERATIONS = 6

DISTRIBUTION OF SPECIES

					UNSCA	LED	UNSC	ALED	
I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM	
1	H+	1.0	1.718E-08	- 7.765	1.372E-08	-7.863	7.984E-01	-0.098	
3	H20	0.0	9.798E-01	-0.009	9.798E-01	-0.009	1.000E+00	0.000	
4	CA+2	2.0	2.122E-03	-2.673	4.847E-04	-3.314	2.285E-01	-0.641	
6	NA+	1.0	6.099E-01	-0.215	4.075E-01	-0.390	6.682E-01	-0.175	

14 CL-	-1.0	6.099E-01	-0.215	4.092E-01	-0.388	6.710E-01	-0.173
15 CO3-2	-2.0	6.187E-05	-4.209	8.096E-06	-5.092	1.309E-01	-0.883
31 OH-	-1.0	1.137E-06	-5.944	7.176E-07	-6.144	6.310E-01	-0.200
34 HCO3-	-1.0	4.118E-03	-2.385	2.425E-03	-2.615	5.890E-01	-0.230
35 H2CO3	0.0	6.573E-05	-4.182	7.386E-05	-4.132	1.124E+00	0.051
76 CACO3	0.0	5.560E-06	-5.255	5.560E-06	-5.255	1.000E+00	0.000

SPECIES	TOTAL MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAMMA
H+	1.7181D-08	1.3718D-08	7.9842D-01
CA+2	2.1271D-03	4.8474D-04	2.2789D-01
NA+	6.0986D-01	4.0750D-01	6.6819D-01
CL-	6.0986D-01	4.0921D-01	6.7099D-01
CO3-2	6.7429D-05	8.0958D-06	1.2006D-01
OH-	1.1371D-06	7.1756D-07	6.3104D-01
HCO3-	4.1183D-03	2.4255D-03	5.8896D-01
H2C03	6.5727D-05	7.3859D-05	1.1237D+00

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
CACL2	4.6815D-01
CACO3	1.6541D-01
CA(OH)2	4.4938D-01
NACL	6.6959D-01
NAHCO3	6.2733D-01
NA2CO3	3.7705D-01
NAOH	6.4935D-01
HCL	7.3194D-01

1STEP NUMBER 2

0 0.300 = FRACTION OF SOLUTION 1. 0.700 = FRACTION OF SOLUTION 2.

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY	
CA	1.982430D-03	-2.7028	
NA	1.829571D+00	0.2623	
CL	1.829571D+00	0.2623	
С	4.211749D-03	-2.3755	

---PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
CALCITE	3.191327D-04	-8.4062	-8.4062	0.0000

* NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ARAGONIT	-8.4062	-8.2195	-0.1868
CALCITE	-8. 4062	-8.4062	0.0000
GAYLUSSI	-13.5474	-9.4210	-4.1264
HALITE	0.1659	1.5700	-1.4041
NAHCOLIT	-12.9227	-10.7420	-2.1807
NATRON	-5.2809	-0.8250	-4.4559
PCO2	-4.1394	-1.4679	-2.6715
PIRSSONI	-13.4635	-9.2340	-4.2295
PORTLAND	-15.6140	-5.1900	-10.4240
TRONA	-17.9800	-11.3840	-6.5960

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	2.301563D-03	-2.6380
NA	1.829571D+00	0.2623
CL	1.829571D+00	0.2623
С	4.530882D-03	-2.3438

----DESCRIPTION OF SOLUTION----

PH = 7.8391 ACTIVITY H2O = 0.9377

OSMOTIC COEFFICIENT = 0.9748

IONIC STRENGTH = 1.8366

TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9971 G/CC ELECTRICAL BALANCE = -4.6177D-10

TOTAL ALKALINITY = 4.6031D-03

ITERATIONS = 5

DISTRIBUTION OF SPECIES

					UNSCA	LED	UNSC	ALED
I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	1.320E-08	-7.879	1.449E-08	-7.839	1.097E+00	0.040
3	H20	0.0	9.377E-01	-0.028	9.377E-01	-0.028	1.000E+00	0.000
4	CA+2	2.0	2.296E-03	-2.639	5.751E-04	-3.240	2.505E-01	-0.601
6	NA+	1.0	1.830E+00	0.262	1.209E+00	0.082	6.607E-01	-0.180
14	CL-	-1.0	1.830E+00	0.262	1.212E+00	0.084	6.626E-01	-0.179
15	CO3-2	-2.0	1.167E-04	-3.933	6.824E-06	-5.166	5.846E-02	-1.233
31	OH-	-1.0	1.164E-06	-5.934	6.503E-07	-6.187	5.587E-01	-0.253
34	HCO3-	-1.0	4.357E-03	-2.361	2.159E-03	-2.666	4.954E-01	-0.305
35	H2C03	0.0	5.120E-05	-4.291	7.254E-05	-4.139	1.417E+00	0.151
76	CACO3	0.0	5.560E-06	-5.255	5.560E-06	-5.255	1.000E+00	0.000

SPECIES	TOTAL MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAMMA
SPECIES	TOTAL MOL	ACTIVITI	TOTAL GAMMA
H+	1.3203D-08	1.4485D-08	1.0971D+00
CA+2	2.3016D-03	5.7510D-04	2.4987D-01
NA+	1.8296D+00	1.2087D+00	6.6065D-01
CL-	1.8296D+00	1.2123D+00	6.6262D-01
CO3-2	1.2229D-04	6.8239D-06	5.5801D-02
OH-	1.1639D-06	6.5030D-07	5.5872D-01
HC03-	4.3574D-03	2.1588D-03	4.9543D-01
H2CO3	5.1195D-05	7.2537D-05	1.4169D+00

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
CACL2	4.78 7 2D-01
CACO3	1.1808D-01
CA(OH)2	4.2727D-01
NACL	6.6163D-01
NAHCO3	5.7211D-01
NA2CO3	2.8987D-01
NAOH	6.0755D-01
HCL.	8.5262D-01

1STEP NUMBER 3

0 0.500 = FRACTION OF SOLUTION 1. 0.500 = FRACTION OF SOLUTION 2.

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	2.143023D-03	-2.6690

NA	3.049286D+00	0.4842
CL	3.049286D+00	0.4842
С	4.477361D-03	-2.3490

---PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
CALCITE	2.584929D-04	-8.4062	-8.4062	0.0000

* NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ARAGONIT	-8.4062	-8.2195	-0.1868
CALCITE	-8.4062	-8.4062	0.0000
GAYLUSSI	-13.3252	-9.4210	-3.9042
HALITE	0.6773	1.5700	-0.8927
NAHCOLIT	-12.6872	-10.7420	-1.9452
NATRON	-5.1695	-0.8250	-4.3445
PCO2	-3.9791	-1.4679	-2.5112
PIRSSONI	-13.1749	-9.2340	-3.9409
PORTLAND	-15.7965	-5.190 0	-10.6065
TRONA	-17.4559	-11.3840	-6.0719

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	2.401516D-03	-2.6195
NA	3.049286D+00	0.4842
CL	3.049286D+00	0.4842
С	4.735854D-03	-2.3246

----DESCRIPTION OF SOLUTION----

PH = 7.6807 ACTIVITY H20 = 0.8910 OSMOTIC COEFFICIENT = 1.0489 IONIC STRENGTH = 3.0566

TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM
DENSITY OF H2O = 0.9971 G/CC

ELECTRICAL BALANCE = -4.6177D-10 TOTAL ALKALINITY = 4.8030D-03 ITERATIONS = 5

DISTRIBUTION OF SPECIES

					UNSCA	LED	UNSC	ALED
I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	1.289E-08	-7.890	2.086E-08	-7.681	1.619E+00	0.209
3	H2 0	0.0	8.910E-01	-0.050	8.910E-01	-0.050	1.000E+00	0.000
4	CA+2	2.0	2.396E-03	-2.621	8.678E-04	-3.062	3.622E-01	-0.441
6	NA+	1.0	3.049E+00	0.484	2.178E+00	0.338	7.143E-01	-0.146
14	CL-	-1.0	3.049E+00	0.484	2.184E+00	0.339	7.161E-01	-0.145
15	CO3-2	-2.0	1.196E-04	-3.922	4.522E-06	-5.345	3.782E-02	-1.422
31	OH-	-1.0	7.980E-07	-6.098	4.291E-07	-6.367	5.377E-01	-0.269
34	HC03-	-1.0	4.552E-03	-2.342	2.060E-03	-2.686	4.526E-01	-0.344
35	H2C03	0.0	5.873E-05	-4.231	1.049E-04	-3.979	1.786E+00	0.252
76	CACO3	0.0	5.560E-06	-5.2 55	5.560E-06	-5.255	1.000E+00	0.000

SPECIES	TOTAL MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAMMA
H+	1.2 888 D-08	2.0861D-08	1.6187D+00
CA+2	2.4015D-03	8.6777D-04	3.6134D-01
NA+	3.0493D+00	2.1782D+00	7.1433D-01
CL-	3.0493D+00	2.1837D+00	7.1615D-01
C O 3-2	1.2512D-04	4.5224D-06	3.6143D-02
OH-	7.9797D-07	4.2910D-07	5.3774D-01
HCO3-	4.5520D-03	2.0604D-03	4.5264D-01
H2C03	5.8731D-05	1.0492D-04	1.7865D+00

---- MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
CACL2	5.7013D-01
CACO3	1.1428D-01
CA(OH)2	4.7100D-01
NACL	7.1524D-01
NAHCO3	5.6863D-01
NA2CO3	2.6420D-01
NAOH	6.1978D-01
HCL	1.0767D+00

1STEP NUMBER 4

^{0 0.700 =} FRACTION OF SOLUTION 1. 0.300 = FRACTION OF SOLUTION 2.

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	2.303616D-03	-2.6376
NA	4.269000D+00	0.6303
CL	4.269000D+00	0.6303
С	4.742973D-03	-2.3239

----PHASE BOUNDARIES----

PHASE	DELTA PHASE#	LOG IAP	LOG KT	LOG IAP/KT
CALCITE	1.619806D-04	-8.4062	-8.4062	0.0000

* NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ARAGONIT	-8.4062	-8.2195	-0.1868
CALCITE	-8.4062	-8.4062	0.0000
GAYLUSSI	- 13 .27 81	-9.4210	-3.8571
HALITE	1.0707	1.5700	-0.4993
NAHCOLIT	-12.5115	-10.7420	-1.7695
NATRON	-5.2514	-0.8250	-4.4264
PCO2	-3.7782	-1.4679	-2.3102
PIRSSONI	-13.0504	-9. 2340	-3.8164
PORTLAND	-16.0233	-5.1900	-10.8333
TRONA	-17.1557	-11.3840	-5.7717

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	2.465596D-03	-2.6081
NA	4.269000D+00	0.6303
CL	4.269000D+00	0.6303
С	4.904953D-03	-2.3094

PH = 7.4844

ACTIVITY H20 = 0.8396

OSMOTIC COEFFICIENT = 1.1354

> IONIC STRENGTH = 4.2765 TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM DENSITY OF H2O = 0.9971 G/CC

ELECTRICAL BALANCE = -4.6175D-10

TOTAL ALKALINITY = 4.9312D-03

ITERATIONS = 5

DISTRIBUTION OF SPECIES

					UNSC	CALED	UNSC	CALED
I	SPECIES	Z	MOLALITY	LOG MOLA	L ACTIVITY	LOG ACT	GAMMA	LOG GAM
	H+	1.0	1.341E-0				2.445E+00	0.388
_	H20	0.0	8.396E-0	- · · ·			1.000E+00	0.000
4	CA+2	2.0	2.460E-0	3 -2.609	1.431E-03	3 -2.844	5.818E-01	-0.235
6	NA+	1.0	4.269E+0	0.630	3.426E+00	0.535	8.026E-01	-0.095
14	CL-	-1.0	4.269E+0	0.630	3.434E+00	0.536	8.045E-01	-0.094
15	CO3-2	-2.0	9.420E-0	-		-5.562	2.910E-02	-1.536
31	OH-	-1.0	4.822E-0	7 -6.317	•		5.337E-01	-0.273
_	HCO3-	-1.0	4.731E-0				4.149E-01	-0.382
_	H2C03	0.0	7.399E-0				2.252E+00	0.353
	CACO3	0.0	5.560E-0	-			1.000E+00	0.000
, 0	CHOOJ	0.0	J. JOUL-0	-5.255	J. JUUL-00	-5.255	1.0002+00	0.000
					UNSCALED	UNSCALED		
		SPECI	ES TOT	AL MOL	ACTIVITY	TOTAL GAM		
		0. 201	25 101	AL HOL	HOIIVIII	TOTAL GAT	TIA .	
		H+	1.3	406D-08	3.2778D-08	2.4451D+	00	
		CA+2	-	656D-03	1.4313D-03	5.8052D-		
		NA+		690D+00	3.4264D+00	8.0262D-		
				-	-			
		CL-	4.2	690D+00	3.4344D+00	8.0449D-	UI	

--- MEAN ACTIVITY COEFFICIENT ----

2.7417D-06

2.5734D-07

1.**96**28D-03

1.6666D-04

9.9762D-05

4.8220D-07

4.7312D-03

7.3992D-05

CO3-2

OH-

HCO3-

H2C03

2.7483D-02

5.3367D-01 4.1486D-01

2.2524D+00

FORMULA	MEAN GAMMA
CACL2	7.2158D-01
CACO3	1.2631D-01
CA(OH)2	5.4885D-01
NACL	8.0355D-01
NAHCO3	5.7704D-01
NA2CO3	2.6063D-01
NAOH	6.5447D-01

HCL 1.4025D+00

1STEP NUMBER 5

0 0.900 = FRACTION OF SOLUTION 1. 0.100 = FRACTION OF SOLUTION 2.

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY			
CA	2.464208D-03	-2.6083			
NA	5.488714D+00	0.7395			
CL	5.488714D+00	0.7395			
С	5.008585D-03	-2.3003			

----PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
CALCITE	5.382800D-05	-8.4062	-8.4062	0.0000

^{*} NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ARAGONIT	-8.4062	-8.2195	-0.1868
CALCITE	-8.4062	-8.4062	0.0000
GAYLUSSI	-13.3265	-9.4210	-3.9055
HALITE	1.4113	1.5700	-0.1587
NAHCOLIT	-12.3719	-10.7420	-1.6299
NATRON	-5. 4492	-0.8250	-4.6242
PCO2	-3.5699	-1.4679	-2.1020
PIRSSONI	-13.0092	-9.2340	-3.7752
PORTLAND	-16.2614	-5.1900	-11.0714
TRONA	-16.9748	-11.3840	-5.5908

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	2.518036D-03	-2.5989
NA	5.488714D+00	0.7395

CL	5.488714D+00	0.7395
С	5.062413D-03	-2.2956

----DESCRIPTION OF SOLUTION----

PH = 7.2754

ACTIVITY H20 = 0.7838

OSMOTIC COEFFICIENT = 1.2309

IONIC STRENGTH = 5.4963

TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9971 G/CC ELECTRICAL BALANCE = -4.6175D-10

TOTAL ALKALINITY = 5.0361D-03

ITERATIONS = 5

DISTRIBUTION OF SPECIES

							1	UNSC	ALED		UNSC	ALED	
I	SPECIES	Z	MOLAL	YT	LOG MOLA	AL.	ACTI	VITY	LOG A	CT	GAMMA	LOG	GAM
1	H+	1.0	1.421	E-08	-7.847	7	5.305	E-08	-7.27	5	3.732E+00	0.	572
3	H20	0.0	7.838	E-01	-0.106	5	7.838	E-01	-0.10	6	1.000E+00	0.	000
4	CA+2	2.0	2.512	E-03	-2.600)	2.486	E-03	-2.60	5	9.894E-01	-0.	005
6	NA+	1.0	5.4891	E+00	0.739)	5.072	E+00	0.70	5	9.240E-01	-0.	034
14	CL-	-1.0	5.4891	E+00	0.739	}	5.083	E+00	0.70	6	9.261E-01	-0.	033
15	CO3-2	-2.0	6.2641	-	-4.203	3	1.579	E-06			2.520E-02	-1.	599
_	OH-	-1.0	2.758	E-07	-6.559	•	1.484	E-07	-6.82	8	5.382E-01	-0.	269
-	HCO3-	-1.0	4.8991	_	-2.310		1.829	_	. •		3.733E-01		428
	H2C03	0.0	9.480	_	-4.023	-	2.692			0	2.840E+00		453
7 6	CACO3	0.0	5.560	E-06	-5.255	5	5.560	E-06	-5.25	5	1.000E+00	0.	000
						U	NSCALE	D	UNSCAL	ED			
		SPECI	ES :	TOTAL	. MOL		CTIVIT		TOTAL G		1A		
		H+		1.421	15D-08	5.1	3045D-	08	3.7318	D+(00		
		CA+2			30D-03		4858D-		9.8720				
		NA+		_	37D+00		0718D+		9.2404				
		CL-	-		37D+00	-	0829D+		9.2606				
		CO3-2		5.819	6D-05	1.	5787D-	06	2.3149	D-0)2		
		OH-	;	2.758	30D- 07	1.	4844D-	07	5.3824	D-0	01		
								_					

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA

4.8994D-03

9.4797D-05

HCO3-

H2C03

MEAN GAMMA

3.7330D-01

2.8399D+00

1.8290D-03

2.6922D-04

CACL2	9.4601D-01
CACO3	1.5117D-01
CA(OH)2	6.5885D-01
NACL	9.2505D-01
NAHCO3	5.8732D-01
NA2CO3	2.7038D-01
NAOH	7.0523D-01
HCL	1.8590D+00

Test problem 6: Simulation of reaction path accompanying the evaporation of sea water

Two limiting cases have traditionally been used to examine reaction paths in geochemical simulation: the open model and the zoned or closed model. In the open model, products formed earlier may re-react with the aqueous phase and form new products as reaction proceeds. In the closed model, products once formed are isolated (zoned, layered, buried) from the system and not allowed to re-react. Test problem 5 of Parkhurst and others (1980) is an example of the logic used in open system simulation, as used in the code PHREEQE. In closed system simulation of reaction paths, the MINERALS input is adjusted so that products once formed are not allowed to re-react with the aqueous solution.

Usually when we simulate reaction paths, the irreversible reactant is an unstable mineral or a suite of unstable minerals; that is, the stoichiometry of the irreversible reaction is fixed. Evaporation poses a special problem in reaction path simulation because the stoichiometry of the irreversible reaction (defined by the aqueous solution composition) continually changes. In test problem 2, REACTION input was used to simulate evaporation of sea water by irreversible addition of "sea salt", that is, a hypothetical solid containing calcium, magnesium, sodium, potassium, chloride, sulfate and carbon in stoichiometric proportion to sea water. The approach used was valid as long as we did not wish to examine details of the reaction path to reach the final equilibrium invariant point because the composition of the reactant (evaporated sea water) changes with reaction progress. The reaction path during evaporation could be solved by changing the stoichiometry of the irreversible reactant (altered "sea salt") at each new phase boundary but this method would be extremely laborious.

As a means of simplifying simulation of evaporation (in open or closed systems) a new feature has been added in PHRQPITZ that allows the user to automatically define the composition of solution 1 as a salt, without the necessity of entering the salt composition under REACTION input. This does not eliminate the need to locate each new phase boundary encountered during evaporation, but it is not necessary to define the stoichiometry of each new reactant (altered sea water for example) as evaporation proceeds. To use this new feature of PHRQPITZ, one first defines the composition of the starting solution. Evaporation of this solution is accomplished by setting IOPT(3) = 6 (specifying that a reaction will be added until the first mineral of MINERALS input is just saturated) and defining the reaction under REACTION input as water (LREAC(1) = 3 and CREAC(1) = 1.0). PHRQPITZ recognizes this combination of input as the special case of evaporation (or dilution, if the starting solution is oversaturated with the first mineral of MINERALS input) and additional output is provided. After the print of mass transfer under the heading "PHASE BOUNDARIES" is printed, PHRQPITZ prints the evaporation factor necessary to reach saturation with the first mineral in MINERALS input. For example an evaporation factor of 2.0 would mean that the concentra-MINERALS input. For example an evaporation factor of 2.0 would mean that the concentration of an inert component in the starting solution would double upon evaporation to reach the phase boundary. (Similar logic applies to dilution where the evaporation factor would be less than unity.) Following a print of the evaporation factor, PHRQPITZ gives the total moles of each element remaining referenced to the initial condition defined in solution 1 (the initial condition being moles per one kilogram of water) and the amount of water (kg) remaining. Following an evaporation step, the total moles of each element should not be confused with the molality of the element, both of which are printed.

In test problem 6 we consider several steps in the evaporation of sea water in a closed system. The problem of sea water evaporation is too complex to be considered fully here. For example purposes, the evaporation of sea water is taken to the halite phase boundary only. The problem is solved in three parts and the input file listed in table 16. The starting solution (sea water) is defined in part a and equilibrated with dolomite in contact with air. Table 17 shows that this equilibration step causes precipitation of dolomite and outgassing of CO₂. This modified starting solution is now undersaturated with all other minerals in the LOOK MIN data base. The modified sea water was saved in solution 1 at completion of part a for use as the starting point of evaporation in part b by setting IOPT(7) to 1 (table 16). In all subsequent evaporation simulations the final solution may be stored in solution 1 to eliminate the need to re-define the starting solution (IOPT(7) = 1). In parts b and c IOPT(3) = 6 indicating that a reaction will be run until a phase boundary (defined by the first mineral under MINERALS input) is reached. The evaporation reaction (or dilution) is defined as 1.0 H₂O under REAC-TION input and no STEPS input is needed. The first mineral under MINERALS input defines


```
Test Problem 6 (part a): Equilibrate sea water with dolomite and air.
0050021000 0 0 0.0
ELEMENTS
          15
C
               61.0171
SOLUTION 1
SEAWATER FROM NORDSTROM ET AL. (1979) TEST CASE IN PPM.
 8 15 3
        8.22
                   8.451
                             25.0
                                       1.023
   4 412.3
                  5 1291.8
                                6 10768.0
                                               7 399.1
                                                           22 67.3
  14 19353.0
                 15 141.682
                               16 2712.0
MINERALS
                    4.0
                           -1.468
PCO2
                                      -4.776
                                                1
                                                           -3.5
           1
  35 1.0
108.3865
           0.01985076 -6919.53
                                   -40.45154
                                                669365.0
DOLOMITE
           3
                     8.00 -17.083 -9.436
                                                 0
   4 1.0
                  5 1.0
                                15 2.0
END
#6 (part b): Evaporate final solution of part a to gypsum saturation.
0060021000 1 1
                     0.0
MINERALS
GYPSUM
           3
                     6.00
                            -4.581
                                                 1
                 16 1.0
   4 1.0
                                 3 2.0
90.318
            0.0
                        -4213.
                                   -32.641
                           -1.468
           1
PCO2
                     4.0
                                      -4.776
                                                           -3.5
                                                 1
  35 1.0
108.3865
           0.01985076 -6919.53 -40.45154
                                                669365.0
DOLOMITE
           3
                   8.00 -17.083 -9.436
                                                 0
   4 1.0
                  5 1.0
                               15 2.0
REACTION
   3 1.0
END
#6 (part c): Evaporate final solution of part b to halite saturation.
0060021000 1 1
                     0.0
MINERALS
HALITE
                                                 1
           2
                     0.00
                            1.570
          1.000 14
                        1.000
   6
                        37302.21
                                   262.4583
                                                -2106915.
-713,4616
           -.1201241
           3
                     6.00 -4.581
GYPSUM
                                                 1
   4 1.0
                 16 1.0
                                 3 2.0
                                   -32.641
90.318
            0.0
                        -4213.
                           -1.468
PCO2
                     4.0
                                      -4.776
                                                 1
                                                           -3.5
  35 1.0
           0.01985076 -6919.53
108.3865
                                                 669365.0
                                   -40.45154
           3
                    8.00 -17.083 -9.436
                                                 0
DOLOMITE
   4 1.0
                  5 1.0
                                15 2.0
REACTION
   3 1.0
END
```


DATA READ FROM DISK

ELEMENTS SPECIES LOOK MIN **MEAN GAM** 1Test Problem 6 (part a): Equilibrate sea water with dolomite and air. 0050021000 0 0 0.00000 **ELEMENTS** C 15 0.61017E+02 0 0.00000E+00 SOLUTION 1 SEAWATER FROM NORDSTROM ET AL. (1979) TEST CASE IN PPM. 8 15 3 8.22 4.00 25.0 1.02 4 4.123D+02 5 1.292D+03 6 1.077D+04 7 3.991D+02 22 6.730D+01 14 1.935D+04 15 1.417D+02 16 2.712D+03 MINERALS 4.0 -1.5 -4.8 PCO2 1 -3.500 35 1.00 1.0839E+02 1.9851E-02 -6.9195E+03 -4.0452E+01 6.6936E+05 DOLOMITE 3 8.0 -17. -9.4 0 0.000 4 1.00 5 1.00 **1**5 2.00 0.00 0.00 0.00 0.000 0 1SOLUTION NUMBER 1 SEAWATER FROM NORDSTROM ET AL. (1979) TEST CASE IN PPM.

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	1.066163D-02	-1.9722
MG	5.50 8555 D-02	-1.2590
NA	4.854426D-01	-0.3139
K	1.057942D-02	-1.9755
CL	5.657614D-01	-0.2474
TOT ALK	2.406585D-03	-2.6186
S	2.926073D-02	-1.5337
B R	8.729404D-04	-3.0590

---- DESCRIPTION OF SOLUTION----

PH = 8.2200
ACTIVITY H20 = 0.9813
OSMOTIC COEFFICIENT = 0.9035
IONIC STRENGTH = 0.7223
TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9971 G/CC ELECTRICAL BALANCE = -4.6020D-05

TOTAL ALKALINITY = 2.4066D-03

ITERATIONS = 9

TOTAL CARBON = 2.2098D-03

DISTRIBUTION OF SPECIES

					UNSCA	LED	UNSC	ALED
I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	8.201E-09	-8.086	6.026E-09	-8.220	7.347E-01	-0.134
3	H20	0.0	9.813E-01	-0.008	9.813E-01	-0.008	1.000E+00	0.000
4	CA+2	2.0	1.064E-02	-1.973	1.999E-03	-2.699	1.879E-01	-0.726
5	MG+2	2.0	5.499E-02	-1.260	1.130E-02	-1.947	2.054E-01	-0.687
6	NA+	1.0	4.854E-01	-0.314	3.096E-01	-0.509	6.378E-01	-0.195
7	K+	1.0	1.058E-02	-1.976	6.226E-03	-2.206	5.885E-01	-0.230
14	CL-	-1.0	5.658E-01	-0.247	3.900E-01	-0.409	6.893E-01	-0.162
15	CO3-2	-2.0	9.105E-05	-4.041	9.137E-06	-5.039	1.004E-01	-0.998
16	S04-2	-2.0	2.926E-02	-1.534	3.100E-03	-2.509	1.060E-01	-0.975
22	BR-	-1.0	8.729E-04	-3.059	6.243E-04	-3.205	7.151E-01	-0.146
31	OH-	-1.0	2.841E-06	-5.547	1.636E-06	-5.786	5.759E-01	-0.240
34	HCO3-	-1.0	1.992E-03	-2.701	1.202E-03	-2.920	6.037E-01	-0.219
35	H2C03	0.0	1.421E-05	-4.847	1.606E-05	-4.794	1.130E+00	0.053
40	HSO4-	-1.0	2.523E-09	-8.598	1.780E-09	-8.750	7.055E-01	-0.152
76	CACO3	0.0	2.588E-05	-4.587	2.588E-05	-4.587	1.000E+00	0.000
85	MGOH+	1.0	3.252E-06	-5.488	2.856E-06	-5.544	8.782E-01	-0.056
86	MGCO3	0.0	8.747E-05	-4.058	8.747E-05	-4.058	1.000E+00	0.000

SPECIES	TOTAL MOL	UNSCALED ACTIVITY	UNSCALED TOTAL GAMMA
H+	1.0724D-08	6.0256D-09	5.6187D-01
CA+2	1.0662D-02	1.9990D-03	1.8749D-01
MG+2	5.5086D-02	1.1297D-02	2.0508D-01
NA+	4.8544D-01	3.0960D-01	6.3777D-01
K+	1.0579D-02	6.2260D-03	5.8850D-01
CL-	5.6576D-01	3.8998D-01	6.8931D-01
C03-2	2.0439D-04	9.1369D-06	4.4702D-02
S04-2	2.9261D-02	3.1005D-03	1.0596D-01
BR-	8.7294D-04	6.2425D-04	7.1511D-01
OH-	6.0930D-06	1.6361D-06	2.6852D-01
HCO3-	1.9917D-03	1.2024D-03	6.0371D-01
H2CO3	1.4212D-05	1.6059D-05	1.1300D+00

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA MEAN GAMMA
CACL2 4.4662D-01

CASO4	1.4095D-01
CACO3	9.1550D-02
CA(OH)2	2.3822D-01
MGCL2	4.6017D-01
MGSO4	1.4741D-01
MGCO3	9.5748D-02
MG(OH)2	2.4545D-01
NACL	6.6304D-01
NA2SO4	3.5061D-01
NAHCO3	6.2051D-01
NA2CO3	2.6296D-01
NAOH	4.1383D-01
KCL	6.3691D-01
K2S04	3.3231D-01
KHCO3	5.9606D-01
K2C03	2.4923D-01
KOH	3.9752D-01
HCL	6.2233D-01
H2S04	3.2221D-01
HBR	6.3388D-01

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-5.2078	-4.3617	-0.8461
ARAGONIT	- 7. 7 384	- 8.2195	0.4811
ARCANITE	-6.92 02	-1.7760	-5.1441
BISCHOFI	-2.8141	4.4551	-7.2692
BLOEDITE	-8.0154	-2.3470	-5.6684
BRUCITE	-13.5194	-10.8840	-2.6354
BURKEITE	-13.1115	-0.772 0	-12.3395
CALCITE	-7.7384	-8.4062	0.6678
CARNALLI	- 5.4289	4.3300	-9.7589
DOLOMITE	-14.7246	-17.083 0	2.3584
EPSOMITE	-4.5130	-1.8809	-2.6321
GAYLUSSI	-13.8370	-9. 4210	-4.4160
GLASERIT	-12.1437	-3.8030	-8.3407
GLAUBERI	-8.7347	-5.2450	-3.4897
GYPSUM	-5.2242	-4.5805	-0.6437
HALITE	-0.9182	1.5700	-2.4881
HEXAHYDR	-4.5048	-1.6346	-2.8702
KAINITE	-7.09 49	-0.1930	-6.9019
KALICINI	-15.4650	-10.0580	-5.4070
KIESERIT	-4.4638	-0.1230	-4.3408
LABILE S	-12.2781	-5.6720	-6.6061
LEONHARD	-4.4884	-0.8870	-3.6014
LEONITE	-11.4085	-3.9790	-7.4295
MAGNESIT	-6.9862	-7.8340	0.8478
MIRABIL	-3.6089	-1.2135	-2.3954
MISENITE	-84.5263	-10.8060	-73.7203
NAHCOLIT	-13.7684	-10.7420	-3.0264
NATRON	-6.1396	-0.8250	-5.3146
NESQUEHO	-7.0108	-5.1670	-1.8438
PCO2	-4.7943	-1.4679	-3.3263

PENTAHYD	-4.4966	-1.2850	-3.2116
PIRSSONI	-13.8124	-9.2340	-4.5784
POLYHALI	-21.8077	-13.7440	-8.0637
PORTLAND	-14.2716	-5.1900	-9.0816
SCHOENIT	-11.4249	-4.3280	-7.0969
SYLVITE	-2.6147	o.8 9 98	-3.5146
SYNGENIT	-12.1361	-7.4480	-4.6881
TRONA	-19.8424	-11.3840	-8.4584

1STEP NUMBER 1

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	1.066163D-02	-1.9722
MG	5.508555D-02	-1.2590
NA	4.854426D-01	-0.3139
K	1.057942D-02	-1.9755
CL	5.657614D-01	-0.2474
TOT ALK	2.209828D-03	-2.6556
S	2.926073D-02	-1.5337
BR	8.729404D-04	-3.0590

----PHASE BOUNDARIES----

PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
PCO2	-7.853663D-04	-4.9679	-1.4679	-3.5000
DOLOMITE	-4.880043D-04	-17.0830	-17.0830	0.0000

* NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-5.2262	-4.3617	-0.8645
ARAGONIT	-8.9263	-8.2195	-0.7069
ARCANITE	-6.9181	-1.7760	-5.1421
BISCHOFI	-2.8166	4.4551	-7.2716
BLOEDITE	-8.0143	-2.3470	-5.6673
BRUCITE	-14.5162	-10.8840	-3.6322
BURKEITE	-14.2751	-0.7720	-13.5031
CALCITE	-8.9263	-8.4062	-0.5201

CARNALLI	-5.4311	4.3300	-9.7611
DOLOMITE	-17.0830	-17.0830	0.0000
E PSOMITE	-4.5138	-1.8809	-2.6330
GAYLUSSI	-16.1923	-9.4210	-6.7713
GLASERIT	-12.1397	-3.8030	-8.3367
GLAUBERI	-8.7512	-5.2450	-3.5062
GYPSUM	-5.2426	-4.5805	-0.6621
HALITE	-0.9179	1.5700	-2.4879
HEXAHYDR	-4.5057	-1.6346	-2.8711
KAINITE	-7.0956	-0.1930	-6.9026
KALICINI	-16.1355	-10.0580	-6.0775
KIESERIT	-4.4647	-0.1230	-4.3417
LABILE S	-12.2925	-5.672 0	-6.6205
LEONHARD	-4.4893	-0.887 0	-3.6023
LEONITE	-11.4074	-3.9790	-7.4284
MAGNESIT	-8.1567	-7.8340	-0.3227
MIRABIL	-3.6068	-1.2135	-2.3933
MISENITE	-81.5306	-10.8060	-70.7246
NAHCOLIT	-14.4390	-10.7420	-3.6970
NATRON	-7.3069	-0.8250	-6.4819
NESQUEHO	-8.18 12	-5.1670	-3.0142
PCO2	-4.9679	-1.4679	-3.5000
PENTAHYD	-4.4975	-1.2850	-3.2125
PIRSSONI	-16.1678	-9.2340	-6.9338
POLYHALI	-21.8435	-13.7440	-8.0995
PORTLAND	-15.2858	-5.1900	-10.0958
SCHOENIT	-11.4238	-4.3280	-7.0958
SYLVITE	-2.6145	0.8998	-3.5143
SYNGENIT	-12.1525	-7.4480	-4.7045
TRONA	-21.6804	-11.3840	-10.2964

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	1.017363D-02	-1.9925
MG	5.459755D-02	-1.2628
NA	4.854426D-01	-0.3139
K	1.057942D-02	-1.9755
CL	5.657614D-01	-0.2474
С	4.484536D-04	-3.3483
S	2.926073D-02	-1.5337
BR	8.729404D-04	-3.0590

----DESCRIPTION OF SOLUTION----

PH = 7.7226 ACTIVITY H20 = 0.9813 OSMOTIC COEFFICIENT = 0.9036

IONIC STRENGTH = 0.7196 TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H20 = 0.9971 G/CC ELECTRICAL BALANCE = -4.6020D-05 TOTAL ALKALINITY = 4.5459D-04

ITERATIONS = 7

DISTRIBUTION OF SPECIES

INICALED

					UNSCA	LED	UNSC	ALED
I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	2.575E-08	-7.589	1.894E-08	-7.723	7.355E-01	-0.133
3	H20	0.0	9.813E-01	-0.008	9.813E-01	-0.008	1.000E+00	0.000
4	CA+2	2.0	1.017E-02	-1.993	1.911E-03	-2.719	1.879E-01	-0.726
5	MG+2	2.0	5.459E-02	-1.263	1.124E-02	-1.949	2.059E-01	-0.686
6	NA+	1.0	4.854E-01	-0.314	3.099E-01	-0.509	6.384E-01	-0.195
7	K+	1.0	1.058E-02	-1.976	6.233E-03	-2.205	5.891E-01	-0.230
14	CL-	-1.0	5.658E-01	-0.247	3.898E-01	-0.409	6.890E-01	-0.162
15	CO3-2	-2.0	6.151E-06	-5.211	6.201E-07	-6.208	1.008E-01	-0.997
16	S04-2	-2.0	2.926E-02	-1.534	3.109E-03	-2.507	1.062E-01	-0.974
22	BR-	-1.0	8.729E-04	-3.059	6.239E-04	-3.205	7.147E-01	-0.146
31	OH-	-1.0	9.027E-07	-6.044	5.205E-07	-6.284	5.766E-01	-0.239
34	HCO3-	-1.0	4.252E-04	-3.371	2.565E-04	-3.591	6.032E-01	-0.220
35	H2C03	0.0	9.531E-06	-5.021	1.077E-05	-4.968	1.130E+00	0.053
40	HSO4-	-1.0	7.955E-09	-8.099	5.609E-09	-8.251	7.050E-01	-0.152
76	CACO3	0.0	1.679E-06	-5.775	1.679E-06	-5.77 5	1.000E+00	0.000
85	MGOH+	1.0	1.027E-06	-5.988	9.044E-07	-6.044	8.802E-01	-0.055
86	MGCO3	0.0	5.908E-06	-5.229	5.908E-06	-5.229	1.000E+00	0.000
			-	-		-		

		UNSCALED	UNSCALED
SPECIES	TOTAL MOL	ACTIVITY	TOTAL GAMMA
**.	2 27010 00	4 00000 00	5 (400D 04
H+	3.3704D-08	1.8939D-08	5.6192D - 01
CA+2	1.01 7 4D-02	1.9109D-03	1.8783D-01
MG+2	5.4598D-02	1.1243D-02	2.0592D-01
NA+	4.8544D-01	3.0991D-01	6.3840D-01
K+	1.05 79 D-02	6.2326D-03	5.8913D-01
CL-	5.6576D-01	3.8978D-01	6.8895D-01
CO3-2	1.3738D-05	6.2007D-07	4.5137D-02
SO4- 2	2.9261D-02	3.1085D-03	1.0624D-01
BR-	8.7294D-04	6.2389D-04	7.1470D-01
OH-	1.9302D-06	5.2055D-07	2.6968D-01
HCO3-	4.2519D-04	2.5648D-04	6.0322D-01
H2C03	9.5307D-06	1.0766D-05	1.1296D+00

--- MEAN ACTIVITY COEFFICIENT ----

FORMULA MEAN GAMMA

CACL2	4.4673D-01
CASO4	1.4126D-01
CACO3	9.2076D-02
CA(OH)2	2.3905D-01
MGCL2	4.6064D-01
MGSO4	1.4791D-01
MGC03	9.6409D-02
MG(OH)2	2.4649D-01
NACL	6.6320D-01
NA2S04	3.5114D-01
NAHCO3	6.2056D-01
NA2CO3	2.6398D-01
NAOH	4.1493D-01
KCL	6.3709D-01
K2S04	3.3283D-01
KHCO3	5.9613D-01
K2C03	2.5022D-01
KOH	3.9859D-01
HCL	6.2221D-01
H2S04	3.2251D-01
HBR	6.3373D-01

HBR 6.3373D-01 1#6 (part b): Evaporate final solution of part a to gypsum saturation. 0060021000 1 1 0.00000

MINERALS					
GYPSUM 3	6.0	-4.6	0.00	1	0.000
4 1.00	16 1.0	00 3	2.00		
9.0318E+01	0.0000E-01	-4.2130E+03	3.2641E+01	0.0000E-01	
PC02 1	4.0	-1.5	-4.8	1	-3.500
35 1.00					
1.0839E+02	1.9851E-02	-6.9195E+03	3 -4.0452E+01	6.6936E+05	
DOLOMITE 3	8.0	-17.	-9.4	0	0.000
4 1.00	5 1.0	00 15	2.00		
0	0.00	0.00	0.00	0	0.000
REACTION					

3 1.000 0.000

1STEP NUMBER 1 0-----

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	1.017363D-02	-1.9925
MG	5.459755D-02	-1.2628
NA	4.854426D-01	-0.3139
K	1.057942D-02	-1.9755
CL	5.657614D-01	-0.2474
С	4.484536D-04	-3.3483
S	2.926073D-02	-1.5337

----PHASE BOUNDARIES----

MASS PRECIPITATED/DISSOLVED FROM INITIAL KILOGRAM WATER

	PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
+	GYPSUM	0.00000D-01	-4.5805	-4.5805	0.0000
•	PCO2 DOLOMITE	-2.017398D-04 -8.623117D-05	-4.9679 -17.0830	-1.4679 -17.0830	-3.5000 0.0000

- * NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.
- ** 3.487807D+00 IS THE EVAPORATION FACTOR NECESSARY TO REACH THE GYPSUM PHASE BOUNDARY.

MOLES OF ELEMENTS REMAINING AFTER REACTION

ELEMENT	MOLES	LOG MOLES
CA	1.008740D-02	-1.9962
MG	5.451131D-02	-1.2635
NA	4.854426D-01	-0.3139
K	1.057942D-02	-1.9755
CL	5.657614D-01	-0.2474
С	7.425143D-05	-4.1293
S	2.926073D-02	-1.5337
BR	8.729404D-04	-3.0590

2.867131D-01 KILOGRAMS OF WATER REMAINING

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-4.5181	-4.3617	-0.1564
ARAGONIT	-8.9579	-8.2195	-0.7385
ARCANITE	-5.8520	-1.7760	-4.0760
BISCHOFI	-1.1940	4.4551	-5.6491
BLOEDITE	-6.1270	-2.3470	-3.7800
BRUCITE	-14.5076	-10.8840	-3.6236
BURKEITE	-11.3906	-0.7720	-10.6186
CALCITE	-8.9579	-8.4062	-0.5517
CARNALLI	-2.7808	4.3300	-7.1108

DOLOMITE	-17.0830	-17.0830	0.0000
EPSOMITE	-3.9037	-1.8809	-2.0229
GAYLUSSI	-15.8708	-9.4210	-6.4498
GLASERIT	-9.9365	-3.8030	-6.1335
GLAUBERI	-6.8350	-5.2450	-1.5900
GYPSUM	-4.5805	-4.5805	0.0000
HALITE	0.1808	1.5700	-1.3892
HEXAHYDR	-3.8725	-1.6346	-2.2379
KAINITE	- 5.3656	-0.1930	-5.1726
KALICINI	-15.9839	-10.0580	-5.9259
KIESERIT	-3.7164	-0.1230	-3.5934
LABILE S	-9.2143	-5.6720	-3.5423
LEONHARD	-3.8101	-0.8870	-2.9231
LEONITE	-9.6621	-3.9790	-5.6831
MAGNESIT	-8.1251	-7.8340	-0.2911
MIRABIL	-2.6291	-1.2135	-1.4156
MISENITE	-75.1160	-10.8060	-64.3100
NAHCOLIT	-14.2163	-10.7420	-3.4743
NATRON	-7.0690	-0.8250	-6.2440
NESQUEHO	-8.2187	-5.1670	-3.0517
PCO2	-4.9679	-1.4679	-3.5000
PENTAHYD	-3.8413	-1.2850	-2.5563
PIRSSONI	-15.7772	-9.2340	-6.5432
POLYHALI	-18.6357	-13.7440	-4.8917
PORTLAND	-15.3405	-5.1900	-10.1505
SCHOENIT	-9.7245	-4.3280	-5.3965
SYLVITE	-1 .58 68	0.8998	-2.4866
SYNGENIT	-10.4013	-7.4480	-2.9533
TRONA	-21.0356	-11.3840	-9.6516

TOTAL MOLALITIES OF ELEMENTS

MOLALITY	LOG MOLALITY
3.518289D-02	-1.4537
1.901250D-01	-0.7210
1.693130D+00	0.2287
3.689898D-02	-1.4330
1.973267D+00	0.2952
2.589747D-04	-3.5867
1.020558D-01	-0.9912
3.044648D-03	-2.5165
	3.518289D-02 1.901250D-01 1.693130D+00 3.689898D-02 1.973267D+00 2.589747D-04 1.020558D-01

----DESCRIPTION OF SOLUTION----

PH = 7.4400 ACTIVITY H20 = 0.9306 OSMOTIC COEFFICIENT = 0.9892

IONIC STRENGTH = 2.5080

TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9971 G/CC ELECTRICAL BALANCE = -4.6020D-05

TOTAL ALKALINITY = 2.6794D-04

ITERATIONS = 10

DISTRIBUTION OF SPECIES

					UNSCA	LED	UNSC	ALED
I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
			_				_	_
1	H+	1.0	3.532E-08	-7.452	3.630E-08	-7.440	1.028E+00	0.012
3	H20	0.0	9.306E-01	-0.031	9.306E-01	-0.031	1.000E+00	0.000
4	CA+2	2.0	3.518E-02	-1.454	6.884E-03	-2.162	1.957E-01	-0.708
5	MG+2	2.0	1.901E-01	-0.721	4.685E-02	-1.329	2.464E-01	-0.608
6	NA+	1.0	1.693E+00	0.229	1.046E+00	0.020	6.178E-01	-0.209
7	K+	1.0	3.690E-02	-1.433	1.786E-02	-1.748	4.841E-01	-0.315
14	CL-	-1.0	1.973E+00	0 .295	1.450E+00	0.161	7.347E-01	-0.134
15	CO3-2	-2.0	4.914E-06	-5.309	1.600E-07	-6.796	3.257E-02	-1.487
16	S04-2	-2.0	1.021E-01	-0. 9 91	4.406E-03	-2.356	4.318E-02	-1.365
22	BR-	-1.0	3.045E-03	-2.516	2.514E-03	-2.600	8.259E-01	-0.083
31	OH-	-1.0	5.637E-07	-6.249	2.575E-07	-6.589	4.569E-01	-0.340
34	HC03-	-1.0	2.391E-04	-3.621	1.269E-04	-3.897	5.307E-01	-0.275
35	H2C03	0.0	7.039E-06	-5.15 2	1.077E-05	-4.968	1.529E+00	0.185
40	HSO4-	-1.0	2.149E-08	-7.668	1.524E-08	-7.817	7.092E-01	-0.149
76	CACO3	0.0	1.561E-06	-5.807	1.561E-06	-5.807	1.000E+00	0.000
85	MGOH+	1.0	2.616E-06	-5.582	1.864E-06	-5.729	7.126E-01	-0.147
86	MGC03	0.0	6.354E-06	-5.197	6.354E-06	-5.197	1.000E+00	0.000

		UNSCALED	UNSCALED
SPECIES	TOTAL MOL	ACTIVITY	TOTAL GAMMA
H+	5.6808D-08	3.6304D-08	6.3907D-01
CA+2	3.5183D-02	6.8842D-03	1.9567D-01
MG+2	1.9012D-01	4.6852D-02	2.4643D-01
NA+	1.6931D+00	1.0459D+00	6.1775D-01
K+	3.6899D-02	1.7863D-02	4.8410D-01
CL-	1.9733D+00	1.4497D+00	7.3467D-01
CO3-2	1.2828D-05	1.6003D-07	1.2475D-02
S04-2	1.0206D-01	4.4064D-03	4.3177D-02
BR-	3.0446D-03	2.5144D-03	8.2585D-01
OH-	3.1799D-06	2.5753D-07	8.0985D-02
HCO3-	2.3911D-04	1.2689D-04	5.3067D-01
H2C03	7.0392D-06	1.0766D-05	1.5295D+00

---- MEAN ACTIVITY COEFFICIENT ----

FORMULA MEAN GAMMA
CACL2 4.7268D-01

9.1915D-02
4.9406D-02
1.0867D-01
5.1045D-01
1.0315D-01
5.5445D-02
1.1735D-01
6.7368D-01
2.5446D-01
5.7256D-01
1.6822D-01
2.2367D-01
5.9637D-01
2.1629D-01
5.0685D-01
1.4299D-01
1.9800D-01
6.8520D-01
2.6028D-01
7.2648D-01

HBR 7.2648D-01

1#6 (part c): Evaporate final solution of part b to halite saturation.

0060021000 1 1 0.00000

MINERALS

MINERALS					
HALITE 2	0.00	1.6	0.00	1	0.000
6 1.00	14 1.0	00			
-7.1346E+02	-1.2012E-01	3.7302E+04	2.6246E+02	-2.1069E+06	
GYPSUM 3	6.0	-4.6	0.00	1	0.000
4 1.00	16 1.0	•	2.00		
9.0318E+01	0.0000E-01	-4.2130E+03	-3.2641E+01	0.0000E-01	
PCO2 1	4.0	-1.5	-4.8	1	-3.500
35 1.00					
1.0839E+02	-	-6.9195E+03	-4.0452E+01	6.6936E+05	
DOLOMITE 3	8.0	-17.	-9.4	0	0.000
4 1.00	5 1.0	00 15	2.00		
0	0.00	0.00	0.00	0	0.000
REACTION					

3 1.000 0.000

'STEP NUMBER 1

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	3.518289D-02	-1.4537
MG	1.901250D-01	-0.7210
NA	1.693130D+00	0.2287
K	3.689898D-02	-1.4330
CL	1.973267D+00	0.2952

С	2.589747D-04	-3.5867
S	1.020 558 D-01	-0.9912
BR	3.044648D-03	-2.5165

----PHASE BOUNDARIES----

MASS PRECIPITATED/DISSOLVED FROM INITIAL KILOGRAM WATER

	PHASE	DELTA PHASE*	LOG IAP	LOG KT	LOG IAP/KT
+	HALITE	0.00000D-01	1.5700	1.5700	0.0000
	GYPSUM PCO2 DOLOMITE	-3.155443D-02 -1.255065D-04 -4.023108D-05	-4.5805 -4.9679 -17.0830	-4.5805 -1.4679 -17.0830	0.0000 -3.5000 0.0000

- * NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.
- ** 3.057208D+00 IS THE EVAPORATION FACTOR NECESSARY TO REACH THE HALITE PHASE BOUNDARY.

MOLES OF ELEMENTS REMAINING AFTER REACTION

ELEMENT	MOLES	LOG MOLES
CA	3.588229D-03	-2.4451
MG	1.900847D-01	-0.7211
NA	1.693130D+00	0.2287
K	3.689898D-02	-1.4330
CL	1.973267D+00	0.2952
С	5.300600D-05	-4.2757
S	7.050135D-02	-1.1518
BR	3.044648D-03	-2.5165

3.270959D-01 KILOGRAMS OF WATER REMAINING

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-4.3204	-4.3617	0.0413
ARAGONIT	-9.5397	-8.2195	-1.3202
ARCANITE	-4.9697	-1.7760	-3.1937
BISCHOFI	1.0046	4.4551	-3.4504
BLOEDITE	-3.8133	-2.3470	-1.4663
BRUCITE	-14.0247	-10.8840	-3.1407

BURKEITE	-8.1263	-0.7720	-7.3543
CALCITE	-9.5397	-8.4062	-1.1334
CARNALLI	0.5743	4.3300	-3.7557
DOLOMITE	-17.083 0	-17.0830	0.0000
EPSOMITE	-3.2344	-1.8809	-1.3536
GAYLUSSI	-16.3782	-9.4210	-6.9572
GLASERIT	-7.9391	-3.8030	-4.1361
GLAUBERI	-5.2894	-5.2450	-0.0444
GYPSUM	-4.5805	-4.5805	0.0000
HALITE	1.5700	1.5700	0.0000
HEXAHYDR	-3.1044	-1.6346	-1.4698
KAINITE	-3.1446	-0.1930	-2.9516
KALICINI	-15.9819	-10.0580	-5.9239
KIESERIT	-2.4541	-0.1230	-2.3311
LABILE S	-6.5185	-5.672 0	-0.8465
LEONHARD	-2.8443	-0.887 0	-1.9573
LEONITE	-7.8140	-3.9790	-3.8350
MAGNESIT	-7.5433	-7.8340	0.2907
MIRABIL	-2.2696	-1.2135	-1.0560
MISENITE	-69.5451	-10.806 0	- 58.7391
NAHCOLIT	-13.9815	-10.7420	-3.2395
NATRON	-7.4889	- 0 .825 0	-6.6639
NESQUEHO	-7.9335	-5.167 0	-2.7665
PCO2	-4.9679	-1.4679	-3.5000
PENTAHYD	-2.9743	-1.2850	-1.6893
PIRSSONI	-15.9881	-9.2340	-6.7541
POLYHALI	-16.1946	-13.7440	-2.4506
PORTLAND	-16.0211	-5.19 00	-10.8311
SCHOENIT	-8.0741	-4.3280	-3.7461
SYLVITE	-0.4304	0.8998	-1.3302
SYNGENIT	-9.4201	-7.4480	-1.9721
TRONA	-20.4299	-11.3840	-9.0459

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
CA	1.096996D-02	-1.9598
MG	5.811285D-01	-0,2357
NA	5.176251D+00	0.7140
K	1.128079D-01	-0.9477
CL	6.032687D+00	0.7805
С	1.620503D-04	-3.7904
S	2.155373D-01	-0.6665
BR	9.308121D-03	-2.0311

----DESCRIPTION OF SOLUTION----

PH = 7.1144

ACTIVITY H20 = 0.7412 OSMOTIC COEFFICIENT = 1.3694 IONIC STRENGTH = 7.2808 TEMPERATURE = 25.0000

PRESSURE = 1.0000 ATM

DENSITY OF H2O = 0.9971 G/CC ELECTRICAL BALANCE = -4.6020D-05 TOTAL ALKALINITY = 2.3239D-04 ITERATIONS = 14

DISTRIBUTION OF SPECIES

					UNSCA	LED	UNSC	ALED
I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	1.815E-08	-7.741	7.684E-08	-7.114	4.234E+00	0.627
					•			•
_	H20	0.0	7.412E-01	-0.130	7.412E-01	-0.130	1.000E+00	0.000
4	CA+2	2.0	1.097E-02	-1.960	1.014E-02	-1.994	9.248E-01	-0.034
5	MG+2	2.0	5.811E-01	-0.236	1.006E+00	0.003	1.731E+00	0.238
6	NA+	1.0	5.176E+00	0.714	4.773E+00	0.679	9.221E-01	-0.035
7	K+	1.0	1.128E-01	-0.948	4.769E-02	-1.322	4.228E-01	-0.374
14	CL-	-1.0	6.033E+00	0.781	7.784E+00	0.891	1.290E+00	0.111
15	C03-2	-2.0	2.102E-06	-5.677	2.845E-08	-7.546	1.354E-02	-1.869
16	S04-2	-2.0	2.155E-01	-0.666	4.714E-03	-2.327	2.187E-02	-1.660
22	BR-	-1.0	9.308E-03	-2.031	1.695E-02	-1.771	1.821E+00	0.260
31	OH-	-1.0	2.328E-07	-6.633	9.690E-08	-7.014	4.163E-01	-0.381
34	HCO3-	-1.0	1.322E-04	-3.879	4.775E-05	-4.321	3.612E-01	-0.442
35	H2C03	0.0	3.100E-06	-5.509	1.077E-05	-4.968	3.473E+00	0.541
40	HSO4-	-1.0	3.995E-08	- 7.398	3.451E-08	-7.462	8.638E-01	-0.064
76	CACO3	0.0	4.089E-07	-6.388	4.089E-07	-6.388	1.000E+00	0.000
85	MGOH+	1.0	4.644E-05	-4.333	1.506E-05	-4.822	3.243E-01	-0.489
86	MGC03	0.0	2.425E-05	-4.615	2.425E-05	-4.615	1.000E+00	0.000

		UNSCALED	UNSCALED
SPECIES	TOTAL MOL	ACTIVITY	TOTAL GAMMA
H+	5.8098D-08	7.6843D-08	1.3226D+00
	• •	• • • • • • • • • • • • • • • • • • • •	-
CA+2	1.0970D-02	1.0145D-02	9.2479D-01
MG+2	5.8113D-01	.0060D+00	1.7311D+00
NA+	5.1763D+00	4.7732D+00	9.2214D-01
K+	1.1281D-01	4.7694D-02	4.2279D-01
CL-	6.0327D+00	7.7836D+00	1.2902D+00
CO3-2	2.6764D-05	2.8450D-08	1.0630D-03
S04-2	2.1554D-01	4.7138D-03	2.1870D-02
BR-	9.3081D-03	1.6952D-02	1.8212D+00
OH-	4.6678D-05	9.6904D-08	2.0760D-03
HC03-	1.3219D-04	4.7746D-05	3.6120D-01
H2C03	3.1002D-06	1.0766D-05	3.4727D+00

⁻⁻⁻ MEAN ACTIVITY COEFFICIENT ----

FORMULA	MEAN GAMMA
FORMULA CACL2 CASO4 CACO3 CA(OH)2 MGCL2 MGSO4 MGCO3 MG(OH)2 NACL NA2SO4 NAHCO3 NACO3 NAOH	MEAN GAMMA 1.1547D+00 1.4221D-01 3.1353D-02 1.5855D-02 1.4231D+00 1.9457D-01 4.2897D-02 1.9540D-02 1.0908D+00 2.6494D-01 5.7713D-01 9.6688D-02 4.3754D-02
KCL K2SO4 KHCO3 K2CO3 KOH HCL H2SO4 HBR	7.3858D-01 1.5753D-01 3.9079D-01 5.7490D-02 2.9626D-02 1.3063D+00 3.3696D-01 1.5520D+00

each new phase boundary to be reached in evaporation. Many more phase boundaries are encountered in the evaporation of sea water beyond halite saturation and are not considered here.

Table 17 (part b output) shows that an evaporation factor of 3.4878 is required to make sea water just saturated with gypsum (while maintaining equilibrium with dolomite in contact with air). Of the initial 1000 grams of water in the starting solution, 286.713 grams remain. Inspection of the LOOK MIN output shows that the modified sea water is saturated with gypsum and dolomite at a PCO_2 of $10^{-3.5}$ atm. and undersaturated with all other minerals in the Harvie and others (1984) data base. The modified sea water at completion of part b is stored in solution 1 (IOPT(7) = 1) to define the starting point in part c.

In part c we assume that the next phase encountered in evaporation will be halite. The starting solution is put back on a molal scale, that is moles per one kg of H_2O . An evaporation factor of 3.0572 is required to reach halite saturation. The cumulative evaporation factor over parts b and c is the product of both evaporation factors, that is, 3.4878 x 3.0572 = 10.6629 and the cumulative water remaining at the halite phase boundary is 1000/10.6629 = 93.78 grams H_2O .

Our problem becomes more complicated at the end of part c (Table 17) where inspection of the final saturation indices shows that at the halite phase boundary the solution is oversaturated with anhydrite and magnesite. If our goal is to follow rigorously the thermodynamic path, it would be necessary to back up and locate at least the magnesite phase boundary and evaluate again whether anhydrite saturation would be reached before halite saturation. At the magnesite phase boundary we could treat the system open or closed to re-reaction of dolomite previously formed, by inclusion or exclusion of dolomite in MINERALS input, respectively. In an open system it would be necessary to locate the point in evaporation where all the dolomite previously formed had reacted to form magnesite. After locating the magnesite phase boundary the point where dolomite vanishes is found by placing dolomite first in the MINERALS input with magnesite equilibrium included. Beyond this point in evaporation the solution will be undersaturated with dolomite and the mineral would be removed from the MINERALS input while maintaining equilibrium with magnesite. If for kinetic reasons it is assumed that magnesite would not precipitate in this environment, MINERALS input for magnesite would not be included and subsequent computed supersaturation with respect to magnesite in solution would be disregarded. Seawater evaporation reaction paths could also be more realistically examined if, for example, formation of magnesian calcites were considered rather than dolomite which is well known for its irreversible behavior in low-temperature environments. Diagenetic reaction paths responsible for dolomitization in marine evaporite sequences can be considered in subsequent simulations.

PROGRAM SOURCE CODE

PHRQPITZ is written in FORTRAN 77 and currently runs on a Prime 850 minicomputer. The source code is listed in Attachment D along with the file COMMON.BLOCKS which is inserted in PHRQPITZ at the \$INSERT statements. A machine-readable listing of PHRQPITZ, associated data files and test cases is written on a 360K 5 1/4 inch floppy disk (diskette 1) located in the back pocket of this report. The contents of this disk can be viewed on an IBM-compatible PC by typing the command "list". Although PHRQPITZ does not currently run on a PC, the floppy disk can be used to transport the code to other machines. In transporting to other machines, it may be necessary to insert the file COMMON.BLOCKS (listed at the end of Attachment D and on the floppy disk) at each \$INSERT statement throughout the source code. Two data files are read internally by PHRQPITZ. These are PHRQPITZ.DATA (read from the main program as unit 11) and PITZER.DATA (read from SUBROUTINE INITPZ as unit 12). The file PHRQPITZ.DATA is listed in Attachment A and the file PITZER.DATA is listed in Attachment B. Both data files can be read from the floppy disk. The user is referred to Parkhurst and others (1980) for information on the construction and logic of PHREEQE. Comment statements in subroutines PITZER, BDK, PTEMP, and INITPZ define calculations based on the Pitzer model. References to equation numbers refer to equations in Harvie and Weare (1980), or to a lesser extent Harvie and others (1984). Subroutines BB, QQ, DFIND and Functions DW, BASE, PS, VLEST and DC are taken from Haar and others (1984) for calculation of the properties of water as a function of temperature and pressure.

INTERACTIVE CONSTRUCTION OF INPUT FILES FOR THE COMPUTER PROGRAM

PITZINPT is a FORTRAN 77 program that facilitates formulation of input data files to PHRQPITZ. It is nearly identical to the code PHRQINPT (Fleming and Plummer, 1983) which is used interactively to construct input sets to PHREEQE (Parkhurst and others, 1980). The source code to PITZINPT is listed in Attachment E. PITZINPT reads two data files (PHRQPITZ.DATA, Attachment A, and MINERALS.2.DATA, Attachment F). Machine-readable copies of PHRQPITZ and associated data files are written on a 360K 5 1/4 inch floppy disk located in the back pocket of this report (diskette 2). Type the command "list" to view the contents of this disk on an IBM-compatible PC.

PITZINPT, written in Prime Fortran 77, interactively asks the user at the terminal for values of variables required by PHRQPITZ (see "Description of Input"), explains the meaning and significance of each variable when required, and internally checks to make sure that values entered are valid. In some cases, PITZINPT automatically assigns values to certain variables, based on values previously entered, and keeps track of additional required information. PITZINPT contains an editor which allows the user to make corrections after each line has been completed.

The file MINERALS.2.DATA (Attachment F) contains pre-constructed MINERALS input for the Harvie and others (1984) data base from which the user may select from the screen for inclusion under MINERALS input. The list of pre-constructed minerals may be displayed by entering the command LIST during MINERALS input.

Attachment G contains a listing of an interactive session in which PITZINPT was used to construct the input file to test problem 3 (table 10). The user is first asked to enter the name of the file to be created. The user may next enter a (optional) reference input file which can be edited to produce the new file. If no such pre-constructed input file exists, a carriage return should be entered (as was done in the example of Attachment G) signifying that all new data will be entered from the screen. PITZINPT then prompts for entry of a title and the option line; lines 1 and 2 of all PHRQPITZ input files. Following completion of entry for each line, the line is displayed and the user is given an opportunity to edit what has been entered. Following acceptance of lines 1 and 2 the user is then prompted for entry of a keyword. Allowable entries are ELEMENTS, SPECIES, SOLUTION, MINERALS, LOOK

MIN, TEMP, STEPS, REACTION, NEUTRAL, SUMS, and END. Under each keyword the user is prompted for necessary information defined under "Description of Input". See Fleming and Plummer (1983) for additional details.

ACKNOWLEDGMENT

We benefited from discussions and correspondence with Charles E. Harvie and John H. Weare (University of California, San Diego) during code development. Eric C. Prestemon contributed computer calculations. The manuscript was improved by reviews from Eric J. Reardon (University of Waterloo), Ronald K. Stoessell (University of New Orleans) and Ronald J. Spencer (University of Calgary).

REFERENCES

- Ananthaswamy, J., and Atkinson, G., 1984, Thermodynamics of concentrated electrolyte mixtures. 4. Pitzer-Debye-Huckel Limiting slopes for water from 0 to 100 °C and from 1 atm to 1 kbar; Journal of Chemical Engineering Data, v. 29, p. 81-87.
- Bates, R.G., 1973, Determination of pH, Theory and Practice (2nd ed.): New York, John Wiley & Sons, 479 p.
- Bates, R.G., 1975, pH scales for sea water; in Goldberg, E.D. (ed), The Nature of Seawater, Dahlem Workshop Report, Berlin, Abakon Verlagsgesellschaft, p. 313-338.
- Bates, R.G., and Culberson, C.H., 1977, Hydrogen ions and the thermodynamic state of marine systems: in (Anderson, N.R., and Malahoff, A., eds), The Fate of Fossil Fuel CO₂ in the Oceans, p. 45-61, New York, Plenum Pub. Corp.
- Bodine, M.W., Jr., and Jones, B.F., 1986, THE SALT NORM: A quantitative chemical-mineralogical characterization of natural waters: U.S. Geological Survey, Water-Resources Investigations Report 86-4086, 130 p.
- Bradley, D.J., and Pitzer, KS, 1979, Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye-Huckel parameters to 350 °C and 1 kbar: Journal Physical Chemistry, v. 83, p. 1599-1603.
- Covington, A.K., Bates, R.G., and Durst, R.A., 1985, Definition of pH scales, standard reference values, measurement of pH and related terminology: Pure & Applied Chemistry, v. 57, p. 531-542.
- Dickson, A.G., 1984, pH scales and proton-transfer reactions in saline media such as sea water: Geochimica Cosmochimica Acta, v. 48, p. 2299-2308.
- Fleming, G.W., and Plummer, L.N., 1983, PHRQINPT An interactive computer program for constructing input data sets to the geochemical simulation program PHREEQE: U.S. Geological Survey, Water-Resources Investigations Report 83-4236, 108 p.
- Frape, S.K., Fritz, P., and McNutt, R.H., 1984, Water-rock interaction and chemistry of groundwaters from the Canadian Shield: Geochimica Cosmochimica Acta, v. 48, p. 1617-1627.
- Haar, L., Gallagher, J.S., and Kell, G.S., 1984, NBS/NRC STEAM TABLES: Thermodynamic and transport properties and computer programs for vapor and liquid states of water in SI units: Washington, Hemisphere Pub. Corp., 320 p.
- Harned, H.S., and Bonner, F.T., 1945, The first ionization of carbonic acid in aqueous solutions of sodium chloride: Journal American Chemical Society, v. 67, p. 1026-1031.
- Harned, H.S., and Davis, R., Jr., 1943, The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50 °C: Journal American Chemical Society, v. 65, p. 2030-2037.

- Harvie, C.E., Moller, N., and Weare, J.H., 1984, The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO₄-OH-HCO₃-CO₃-CO₂-H₂O system to high ionic strengths at 25 °C: Geochimica Cosmochimica Acta, v. 48, p. 723-751.
- Harvie, C.E., and Weare, J.H., 1980, The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-Cl-SO₄-H₂O system from zero to high concentration at 25 °C: Geochimica Cosmochimica Acta, v. 44, p. 981-997.
- Hill, A.E., and Bacon, L.R., 1927, Ternary systems VI. Sodium carbonate, sodium bicarbonate and water: Journal American Chemical Society, v. 49, p. 2487-2495.
- Linke, W.F., 1965, Solubilities of inorganic and metal organic compounds: Washington, American Chemical Society, (4th ed.), v. 1, 1487 p., v. 2, 1914 p.
- MacInnes, D.A., 1919, The activities of the ions of strong electrolytes: Journal American Chemical Society, v. 41, 1086-1092.
- Maier, C.G., and Kelly, K.K., 1932, An equation for the representation of high temperature heat content data: Journal American Chemical Society, v. 54, p. 3243-3246.
- Millero F.J., 1979, The thermodynamics of the carbonate system in seawater: Geochimica Cosmochimica Acta, v. 43, p. 1651-1661.
- Millero, F.J., 1983, The estimation of the pK*_{HA} of acids in seawater using the Pitzer equations: Geochimica Cosmochimica Acta, v. 47, p. 2121-2129.
- Millero, F.J., and Schreiber, D.R., 1982, Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters: American Journal Science, v. 282, p. 1508-1540.
- Moller, N., 1988, The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-Ca-Cl-SO₄-H₂O system, to high temperatures and concentration: Geochimica Cosmochimica Acta, v. 52, p. 821-837.
- Pabalan, R.T., and Pitzer, K.S., 1987, Thermodynamics of NaOH(aq) in hydrothermal solutions: Geochimica Cosmochimica Acta, v. 51, p. 829-837.
- Parkhurst, D.L., Thorstenson, D.C., and Plummer, L.N., 1980, PHREEQE A computer program for geochemical calculations: Water-Resources Investigations Report 80-96, 210 p.
- Pitzer, K.S., 1973, Thermodynamics of electrolytes. 1. Theoretical basis and general equations: Journal Physical Chemistry, v. 77, p. 268-277.
- Pitzer, K.S., 1975, Thermodynamics of electrolytes. 5. Effects of higher-order electrostatic terms: Journal Solution Chemistry, v. 4, p. 249-265.
- Pitzer, K.S., 1979, Theory: Ion Interaction Approach: in R.M. Pytkowicz, (ed.), Activity Coefficients in Electrolyte Solutions, v. 1, CRC Press, Inc., Boca Raton, Florida, pp. 157-208.
- Pitzer, K.S., 1987, A thermodynamic model for aqueous solutions of liquid-like density. In Reviews in Mineralogy, v. 17, Thermodynamic Modeling of Geological Materials: Minerals, Fluids and Melts. I.S.E. Carmichael and H.P. Eugster, Eds. Mineralogical Society of America.
- Pitzer, K.S., and Kim, J.J., 1974, Thermodynamics of electrolytes. 4. Activity and osmotic coefficients for mixed electrolytes: Journal American Chemical Society, v. 96, p. 5701-5707.
- Pitzer, K.S., and Mayorga, G., 1973, Thermodynamics of electrolytes. 2. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent: Journal Physical Chemistry, v. 77, p. 2300-2308.
- Pitzer, K.S., and Mayorga, G., 1974, Thermodynamics of electrolytes. 3. Activity and osmotic coefficients of 2-2 electrolytes: Journal Solution Chemistry, v. 3, p. 539-546.
- Pitzer, K.S., and Peiper, J.C., 1980, The activity coefficient of aqueous NaHCO₃: Journal Physical Chemistry, v. 84, p. 2396-2398.
- Pitzer, K.S., Peiper, J.C., and Busey, R.H., 1984, Thermodynamic properties of aqueous sodium chloride solutions: Journal of Physical and Chemical Reference Data, v. 13, p. 1-102.

- Pitzer, K.S., and Silvester, L.F., 1978, The thermodynamics of electrolytes. 11. Properties of 3:2, 4:2 and high valence types: Journal Physical Chemistry, v. 82, p. 1239-1242.
- Plummer, L.N., and Busenberg, E., 1982, The solubilities of calcite, aragonite and vaterite in CO₂-H₂O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO₃-CO₂-H₂O: Geochimica Cosmochimica Acta, v. 46, 1011-1040.
- Plummer, L.N., and Sundquist, E.T., 1982, Total individual ion activity coefficients of calcium and carbonate in seawater at 25 °C and 35 °/_{oo} salinity, and implications to the agreement between apparent and thermodynamic constants of calcite and aragonite: Geochimica Cosmochimica Acta, v. 46, p. 247-258.
- Reardon, E.J., and Armstrong, D.K., 1987, Celestite (SrSO₄) solubility in water, seawater and NaCl solution: Geochimica Cosmochimica Acta, v. 51, p. 63-72.
- Roy, R.N., Gibbons, J.J., Williams, R., Godwin, L., Baker, G., Simonson, J.M., and Pitzer, K.S., 1984, The thermodynamics of aqueous carbonate solutions. 2. Mixtures of potassium carbonate, bicarbonate, and chloride: Journal Chemical Thermodynamics, v. 16, p. 303-315.
- Sarbar, M., Covington, A.K., Nuttal, R.L., and Goldberg, R.N., 1982, The activity and osmotic coefficients of aqueous sodium bicarbonate solutions: Journal Chemical Thermodynamics, v. 14, p. 967-976.
- Silvester, L.F., and Pitzer K.S., 1977, Thermodynamics of electrolytes. 8. High-temperature properties, including enthalpy and heat capacity, with application to sodium chloride: Journal Physical Chemistry, v. 81, p. 1822-1828.
- Weres, O., Peiper, J.C., Pitzer, K.S., and Pabalan, R., 1987, Documentration for computer program NACL: LBL-21859, UC-11, 30p, Lawrence Berkeley Laboratory, University of California. Available from NTIS, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.
- Westcott, C. Clark, 1978, pH Measurements: New York, Academic Press, 172 p.

tachment A.	Listing of 1	the file PHR	QPITZ.DAT	A

ELEMENTS CA MG NA K FE MN BA SR CL C S LI BR	4 5 6 7 8 9 11 12 14 15 16 21 22	40.08 24.305 22.9898 39.0983 55.847 54.9380 137.33 87.62 35.453 44.0098 96.06 6.941 79.904		CA+2 MG+2 NA+ K+ FE+2 MN+2 BA+2 SR+2 CL- CO2 SO4-2 LI+ BR-				
SPECIES								
H+ 0.0 1 1.0	100 0.0	0 1.0	0.0		9.0			0.0
2 E- 0.0 2 1.0	100 0.0	0 -1.0	0.0		0.0			0.0
3 H2O 0.0 3 1.0	100 0.0	0.0	0.0		0.0			0.0
CA+2 0.0 4 1.0 5	10° 0.0	1 2.0	0.0		6.0	5.0	0.165	0.0
MG+2 0.0 5 1.0	0.0	1 2.0	0.0		8.0	5.5	0.20	0.0
NA+ 0.0 6 1.0	10	1 1.0	0.0		4.0	4.0	0.075	0.0
K+ 0.0 7 1.0 8	10 0.0	1 1.0	0.0		3.0	3.5	0.015	0.0
FE+2 0.0 8 1.0 9	100 0.0	0 2.0	2.0		6.0			0.0
MN+2 0.0 9 1.0 11	100	0 2.0	2.0		6.0			0.0
BA+2	100	0 2.0	0.0		5.0			0.0

0.0 11 1.0	0.0					
12 SR+2 0.0 12 1.0	101 2.0 0.0	0.0	5.0	5.26	0.121	0.0
14 CL- 0.0 14 1.0	101 -1.0 0.0	0.0	3.0	3.5	0.015	0.0
15 CO3-2 0.0 15 1.0	101 -2.0 0.0	4.0	4.5	5.4	0.0	2.0
16 S04-2 0.0 16 1.0	101 -2.0 0.0	6.0	4.0	5.0	-0.04	0.0
21 LI+ 0.0 21 1.0	100 1.0	0.0	6.0			0.0
22 BR- 0.0 22 1.0	100 -1.0	0.0	3.0			0.0
31 OH- -13.998 3 1.0	200 -1.0 13.345 1 -1.0	0.0	3.5			1.0
34 HCO3- 10.3393 15 1.0	211 -1.0 -3.561 1 1.0	4.0 107.8975	4.5 0.03252849	5.4 -5151.79	0.0 -38.9256	1.0 1 563713.9
	310 0.0 -5.738 1 2.0	464.1925	0.0 0.09344813	-26986.16	-165.759	0.0 51 2248628.9
40 HSO4- 1.979 16 1.0	210 -1.0 4.91 1 1.0		0.0 0.0183412	557.2461		0.0
	210 0.0 3.547 - 15 1.0		0.0 -0.299440	35512.75	485.818	2.0
85 MGOH+ -11.809 5 1.0	-	0.0	0.0			1.0
86 MGCO3 2.928 5 1.0	210 0.0 2.535 15 1.0		0.0	1093.486	12.72433	2.0

LOOK MIN

```
6.00 -4.362
ANHYDRIT
         2
                                           1
        1.000 16 1.000
 4
422,950
         0.0
                    -18431. -147.708
ARAGONIT
         2
                  4.00 -8.220
                                           1
 15 1.0
               4 1.0
         -.077993
                     2903.293
-171.8607
                               71.595
         2
ARCANITE
                  6.00 -1.776
                                           1
                  1.000
 7
        2.000
               16
2.823
          0.0
                    -1371.2
BISCHOFI
         3
                  0.00 4.455
                                           1
 5
         1.000
                     2,000 3
                                  6.000
3.524
         0.0
                     277.6
         4
BLOEDITE
                 12.00 -2.347
                                           0
         2.000
                                          3
 6
                    1.000 16
                                  2.000
                                                4.000
BRUCITE
         2
                  0.00 -10.884.85
                                           0
         1.000
                  2.000
 5
BURKEITE
         3
                 16.00 -.772
                                           0
 6
         6.000
               15
                  1.000 16
                                  2.000
CALCITE
         2
                  4.00 -8.406
                                           1
 15 1.0
               4 1.0
         -.077993 2839.319
-171.8329
                               71.595
         4
                  0.00 4.330
CARNALLI
                                           0
 7
         1.000
                  1.000 14
                                   3.000
                                          3
                                                6.000
                  8.00 -17.083 -9.436
DOLOMITE
         3
                                           0
               5 1.0 15 2.0
  4 1.0
                  6.00 -1.881
EPSOMITE
         3
                                           1
                    1.000 3
         1.000
 5
               16
                                   7.000
1.718
         0.0
                     -1073.
         4
                  8.00 -9.421
GAYLUSSI
                                           0
 4
         1.000
                  2.000 15
                                  2.000
                                          3
                                                5.000
GLASERIT
                 24.00 -3.803
         3
                                           0
 6
         1.000
               7 3.000 16
                                   2.000
GLAUBERI
         3
                 12.00 -5.245
                                           0
         2.000
 6
                 1.000 16
                                  2.000
GYPSUM
         3
                  6.00 -4.581
                                           1
                        3 2.0
 4 1.0
90.318
          0.0
                   -4213.
                               -32.641
HALITE
                  0.00 1.570
                                           1
         1.000 14
 6
                     1.000
-713.4616
         -.1201241
                   37302.21
                               262.4583
                                          -2106915.
         3
                  6.00 -1.635
HEXAHYDR
                                           1
         1.000 16
                     1.000 3
                                  6.000
 5
-62,666
         0.0
                     1828.
                               22.187
KAINITE
         5
                  6.00 -0.193
                                           0
         1.000
 7
                  1.000 14
                                   1.000
                                         16
                                                1.000
                                                      3
                                                             3.000
KALICINI
         3
                  4.00 -10.058
                                           0
  7
         1.000
                     1.000 15
                                   1.000
KIESERIT
         3
                  6.00 - 0.123
                                           0
  5
         1.000
               16
                     1.000 3
                                   1.000
LABILE S
         4
                 18.00 -5.672
                                           0
 6
        4.000
                     1.000 16
                                   3.000
                                          3
                                                2,000
LEONHARD
         3
                  6.00 -0.887
                                           0
 5
         1.000
                   1.000 3
                                  4.000
               16
         4
LEONITE
                 12.00 - 3.979
                   1.000 16
        2.000
               5
                                  2.000
                                          3
                                                4.000
 7
         2
                        -7.834
MAGNESIT
                  4.00
                                  -6.169
                                           0
```

```
1.000 15
                           1.000
MIRABIL
           3 6.
                             -1.214
                                                      1
   62.
                  161.
                                   310.
-3862.234
            -1.19856
                         93713.54
                                      1577.756
                                                   ٥.
MISENITE
            3
                     42.00 -10.806
                                                     0
          8.000
   7
                           6.000 16
                                           7,000
                   1
NAHCOLIT
                      4.00 -10.742
           3
                                                     0
           1.000
                           1.000 15
                                           1.000
   6
                   1
NATRON
           3
                      4.00
                             -0.825
                                                     0
  6
          2.000
                           1.000 3
                                          10,000
                  15
NESQUEHO
                      4.00
                            -5, 167
                                                     0
            3
   5
           1.000
                           1.000 3
                  15
                                           3.000
PC02
                      4.0
                              -1.468
                                          -4.776
                                                      1
            1
  35 1.0
108.3865
            0.01985076 -6919.53
                                      -40.45154
                                                    669365.0
PENTAHYD
            3
                      6.00 - 1.285
                                                     0
           1.000
                  16
                           1.000 3
                                           5.000
PIRSSONI
           4
                      8.00
                                                     0
                            -9.234
   6
          2.000
                   4
                           1.000 15
                                           2.000
                                                   3
                                                           2.000
POLYHALI
           5
                     24.00 -13.744
                                                     0
   7
          2.000
                   5
                           1.000 4
                                           2.000
                                                           4.000
                                                  16
                                                                   3
                                                                           2.000
PORTLAND
           2
                      0.00
                            -5.190
                                                     0
   4
           1.000
                  31
                           2.000
SCHOENIT
           4
                     12.00 -4.328
                                                     0
          2.000
                          1.000 16
   7
                                           2,000
                                                   3
                                                           6.000
                            .900
SYLVITE
                      0.00
           2
                                                      1
                  14
   7
           1.000
                           1.000
            0.0
3.984
                          -919.55
SYNGENIT
           4
                     12.00 -7.448
                                                     0
          2.000
                           1.000 16
                                           2.000
                                                   3
                                                           1.000
   7
TRONA
           4
                      8.00 -11.384
                                                     0
          3.000
                                                   3
   6
                   1
                           1.000 15
                                           2,000
                                                           2.000
MEAN GAM
CACL2
         2
              4
                  1.0
                       14
                             2.0
CASO4
         2
              4
                  1.0
                       16
                             1.0
         2
              4
                  1.0
CACO3
                       15
                             1.0
         2
              4
CA(OH)2
                  1.0
                       31
                             2.0
         2
              5
MGCL2
                  1.0
                       14
                             2.0
         2
              5
                       16
MGS04
                  1.0
                             1.0
         2
              5
                  1.0
                       15
MGC03
                             1.0
              5
         2
MG(OH)2
                  1.0
                       31
                             2.0
NACL
         2
                  1.0
                       14
                             1.0
         2
NA2S04
              6
                  2.0
                       16
                             1.0
         2
                  1.0
                       34
                             1.0
NAHCO3
         2
              6
                  2.0
                       15
                             1.0
NA2CO3
         2
                  1.0
              6
NAOH
                       31
                             1.0
         2
                  1.0
                       14
KCL
              7
                             1.0
         2
              7
                  2.0
                       16
                             1.0
K2S04
         2
                       34
KHC03
              7
                  1.0
                             1.0
         2
              7
                        15
                  2.0
                             1.0
K2C03
                  1.0
KOH
         2
              7
                       31
                             1.0
         2
HCL
                  1.0
                       14
                             1.0
H2S04
         2
                  2.0
                       16
                             1.0
              1
HBR
                  1.0
                       22
                             1.0
END
```

Attachment B.	Listing of the	file PITZER.	DATA	

```
SPECIES 21
     4 5 6 7 8 9 11 12 14 15 16 21 22 31 34 35 40 76 85 86
  1
B0
  NA+
             CL-
                        0.0765
                                                 -4.4706
                                    -777.03
                                                               0.008946
                                                                           -3.3158E-6
  K+
             CL-
                        0.04835
                                                               5.794E-4
  MG+2
             CL-
                        0.35235
                                                              -1.943E-4
  CA+2
             CL-
                                                              -1.725E-4
                        0.3159
  MGOH+
             CL-
                       -0.1
             CL-
  H+
                        0.1775
                                                              -3.081E-4
  LI+
             CL-
                        0.1494
                                                              -1.685E-4
  SR+2
                        0.28575
             CL-
                                                               0.717E-3
  FE+2
             CL-
                        0.335925
  MN+2
             CL-
                        0.327225
  BA+2
             CL-
                                                               0.6405E-3
                        0.2628
  NA+
             BR-
                        0.0973
                                                               7.692E-4
  K+
             BR-
                        0.0569
                                                               7.39E-4
  H+
             BR-
                        0.1960
                                                              -2.049E-4
  MG+2
             BR-
                        0.4327
                                                              -5.625E-5
  CA+2
             BR-
                        0.3816
                                                              -5.2275E-4
  I.I+
             BR-
                        0.1748
                                                              -1.819E-4
  SR+2
             BR-
                        0.331125
                                                              -0.32775E-3
  BA+2
             BR-
                        0.31455
                                                              -0.33825E-3
  NA+
             S04-2
                        0.01958
                                                               2.367E-3
  K+
             S04-2
                        0.04995
                                                               1.44E-3
  MG+2
             S04-2
                        0.221
                                                              -0.69E-3
  CA+2
             S04-2
                        0.2
  H+
             504 - 2
                        0.0298
  LI+
             S04-2
                        0.136275
                                                               0.5055E-3
  SR+2
             S04-2
                        0.220
                                                              -2.9E-3
             S04-2
  FE+2
                        0.2568
  MN+2
             S04-2
                        0.2065
             HS04-
  NA+
                        0.0454
  K+
             HS04-
                       -0.0003
  MG+2
             HS04-
                        0.4746
  CA+2
             HS04-
                        0.2145
  H+
             HS04-
                        0.2065
  FE+2
             HS04-
                        0.4273
  NA+
             OH-
                        0.0864
                                                               7.00E-4
  K+
             OH-
                        0.1298
  CA+2
             OH-
                       -0.1747
  LI+
             OH-
                        0.015
  BA+2
             OH-
                        0.17175
  NA+
             HCO3-
                        0.0277
                                                               1.00E-3
  K+
             HCO3-
                        0.0296
                                                               0.996E-3
  MG+2
             HCO3-
                        0.329
  CA+2
             HCO3-
                        0.4
  SR+2
             HCO3-
                        0.12
  NA+
             CO3-2
                        0.0399
                                                               1.79E-3
  K+
             CO3-2
                        0.1488
                                                               1.788E-3
B1
             CL-
                        0.2664
  NA+
                                                               6.1608E-5
                                                                            1.0715E-6
  K+
             CL-
                        0.2122
                                                               10.71E-4
  MG+2
             CL-
                        1.6815
                                                               3.6525E-3
  CA+2
             CL-
                        1.614
                                                               3.9E-3
```

MGOH+ H+ LI+ SR+2 FE+2 MN+2	CL- CL- CL- CL- CL-	1.658 0.2945 0.3074 1.66725 1.53225 1.55025			1.419E-4 5.366E-4 2.8425E-3
BA+2 NA+ K+ H+ MG+2 CA+2 LI+ SR+2 BA+2	CL- BR- BR- BR- BR- BR- BR- BR- BR-	1.49625 0.2791 0.2212 0.3564 1.753 1.613 0.2547 1.7115			3.2325E-3 10.79E-4 17.40E-4 4.467E-4 3.8625E-3 6.0375E-3 6.636E-4 6.5325E-3 6.78E-3
NA+ K+ MG+2 CA+2 LI+ SR+2 FE+2 MN+2 NA+	S04-2 S04-2 S04-2 S04-2 S04-2 S04-2 S04-2 HS04-	1.113 0.7793 3.343 3.1973 1.2705 2.88 3.063 2.9511 0.398			5.6325E-3 6.6975E-3 1.53E-2 5.46E-2 1.41E-3 27.0E-3
K+ MG+2 CA+2 H+ FE+2 NA+ K+ CA+2 LI+	HSO4- HSO4- HSO4- HSO4- HSO4- OH- OH- OH-	0.1735 1.729 2.53 0.5556 3.48 0.253 0.32 -0.2303 0.14			1.34E-4
BA+2 NA+ K+ MG+2 CA+2 NA+ K+	OH- HCO3- HCO3- HCO3- HCO3- CO3-2	1.2 0.0411 -0.013 0.6072 2.977 1.389 1.43			1.10E-3 1.104E-3 2.05E-3 2.051E-3
B2 MG+2 CA+2 SR+2 FE+2 MN+2 CA+2	S04-2 S04-2 S04-2 S04-2 S04-2 OH-	-37.23 -54.24 -41.8 -42.0 -40.0 -5.72			-0.253 -0.516 -0.42
CO NA+ K+ MG+2 CA+2 H+ LI+ SR+2 FE+2	CL- CL- CL- CL- CL- CL- CL-	0.00127 -0.00084 0.00519 -0.00034 0.0008 0.00359 -0.00130461 -0.00860725	33.317	0.09421	-4.655E-5 -5.095E-5 -1.64933E-4 6.213E-5 -4.520E-5

```
MN+2
             CL-
                       -0.0204972
                                                               -1.53796E-4
  BA+2
             CL-
                       -0.0193782
  NA+
             BR-
                        0.00116
                                                               -9.30E-5
                                                               -7.004E-5
  K+
             BR-
                       -0.00180
  H+
             BR-
                        0.00827
                                                               -5.685E-5
  MG+2
             BR-
                        0.00312
             BR-
  CA+2
                       -0.00257
  LI+
             BR-
                                                               -2.813E-5
                        0.0053
  SR+2
             BR-
                        0.00122506
  BA+2
             BR-
                       -0.0159576
                                                               -4.87904E-4
  NA+
             S04-2
                        0.00497
                                                                0.523E-3
  MG+2
             S04-2
                        0.025
             S04-2
                        0.0438
  H+
                       -0.00399338
                                                               -2.33345E-4
  LI+
             S04-2
             S04-2
                                                                3.0E-3
  SR+2
                        0.019
  FE+2
             SO4-2
                        0.0209
  MN+2
             S04-2
                        0.01636
                                                               -18.94E-5
  NA+
             OH-
                        0.0044
                        0.0041
  K+
             OH-
                       -0.008
  K+
             HC03-
             CO3-2
                        0.0044
  NA+
  K+
             C03-2
                       -0.0015
THETA
  K+
             NA+
                       -0.012
  MG+2
             NA+
                        0.07
  CA+2
             NA+
                        0.07
             NA+
                        0.036
  H+
             K+
                        0.032
  CA+2
                        0.005
  H+
             K+
  CA+2
             MG+2
                        0.007
  H+
             MG+2
                        0.1
             CA+2
                        0.092
  H+
  S04-2
             CL-
                        0.02
  HS04-
             CL-
                       -0.006
  OH-
             CL-
                       -0.05
             CL-
                        0.03
  HC03-
  C03-2
             CL-
                       -0.02
  OH-
             BR-
                       -0.065
             S04-2
                       -0.013
  OH-
  HC03-
             S04-2
                        0.01
             S04-2
  C03-2
                        0.02
             OH-
                        0.1
  CO3-2
             HC03- · ·
  C03-2
                       -0.04
LAMDA
             H2C03
                        0.1
  NA+
  K+
             H2C03
                        0.051
                        0.183
  MG+2
             H2C03
             H2C03
                        0.183
  CA+2
  CL-
             H2C03
                       -0.005
                        0.097
  S04-2
             H2C03
  HS04-
             H2C03
                       -0.003
PSI
  NA+
             K+
                        CL-
                                    -0.0018
             K+
                                   -0.0022
  NA+
                        BR-
             K+
                        S04-2
                                   -0.010
  NA+
                        HCO3-
             K+
                                    -0.003
  NA+
```

NA+	K+	CO3-2	0.003
NA+	CA+2	CL-	-0.007
NA+	CA+2	S04-2	-0.055
NA+	MG+2	CL-	-0.012
NA+	MG+2	S04-2	-0.015
NA+	H+	CL-	-0.004
NA+	H+	BR-	-0.012
NA+	H+	HS04-	-0.0129
K+	CA+2	CL-	-0.025
K+	MG+2	CL-	-0.022
K+	MG+2	S04-2	-0.048
K+	H+	CL	-0.011
K+	H+	BR-	-0.021
K+	H+	SO4-2	0.197
K+	H+	HS04-	-0.0265
CA+2	MG+2	CL-	-0.012
CA+2	MG+2	S04-2	0.024
CA+2	H+	CL-	-0.015
MG+2	MGOH+	CL-	0.028
MG+2	H+	CL-	-0.011
MG+2	H+	HS04-	-0.0178
CL-	BR-	K+	0.0000
CL-	S04-2	NA+	0.0014
CL-	S04-2	CA+2	-0.018
CL-	SO4-2	MG+2	-0.004
CL-	HSO4-	NA+	-0.006
CL-	HSO4-	H+	0.013
CL-	OH-	NA+	-0.006
CL-	OH-	K+	-0.006
CL-	OH-	CA+2	-0.025
CL-	HCO3-	NA+	-0.015
CL-	HCO3-	MG+2	-0.096
CL-	CO3-2	NA+	0.0085
CL-	CO3-2	K+	0.004
S04-2	HS04-	NA+	-0.0094
S04-2	HS04-	K+	-0.0677
S04-2	HS04-	MG+2	-0.0425
S04-2	OH-	NA+	-0.009
S04-2	OH-	K+	-0.050
S04-2	HCO3-	NA+	-0.005
S04-2	HCO3-	MG+2	-0.161
S04-2	CO3-2	NA+	-0.005
S04-2	CO3-2	K+	-0.009
OH-	CO3-2	NA+	-0.017
OH-	CO3-2	K+	-0.01
OH-	BR-	NA+	-0.018
OH-	BR-	K+	-0.014
HC03-	C03-2	NA+	0.002
HCO3-	C03-2	K+	0.012

Attachment C Summary of published Pitzer interaction parameters
· · · · · · · · · · · · · · · · · · ·

Attachment C.1. -- List of references cited in Attachments
C.2 through C.6

- 1) Ananthaswamy, J., and Atkinson, G., 1985, Thermodynamics of Concentrated Electrolyte Mixtures. 5. A Review of the Thermodynamic Properties of Aqueous Calcium Chloride in the Temperature Range 273.15-373.15 K:

 Journal of Chemical and Engineering Data, v.30, pp.120-128.
- 2) Andreu, R., Cejudo, J.A., and Marcos, E.S., 1985, Ionpit: A Full Implementation of Pitzer's Ion Interaction Treatment: Computers and Chemistry, v.9, no.3, pp.185-190.
- 3) Atlas, E., Culberson, C., and Pytkowicz, R.M., 1979, Phosphate Association With Na+, Ca+2 and Mg+2 in Seawater: Marine Chemistry, v.4, pp.243-254.
- 4) Bahia, A.M., Lilley, T.H., and Tasker, I.R., 1978, The Osmotic Coefficients of Aqueous CsCl and CsCl+KCl Mixtures at 298.15 K: Journal of Chemical Thermodynamics, v.10, pp.683-685.
- 5) Ball, F.X., Furst, W., and Renon, H., 1985, An NRTL Model for Representation and Prediction of Deviation from Ideality in Electrolyte Solutions Compared to the Models of Chen (1982) and Pitzer (1983): AICHE Journal, v.31, no.3, pp.392-399.
- 6) Boyd, G.E., 1977, Solute Activity Coefficients in Dilute Aqueous Electrolyte Mixtures.3. The Ternary System HC104+U02(C104)2+H20 at 25 Degrees C: Journal of Solution Chemistry, v.6, no.11, pp.747-756.
- 7) Byrne, R.H.Jr., and Kester, D.R., 1974, Inorganic Speciation of Boron in Seawater: Journal of Marine Research, v.32, pp.119-127.
- 8) Chan, C.Y., and Khoo, K.H., 1979, Re-determination of Mean Ionic Activity Coefficients for the System HCl+KCl+Water at 298.15K and Correlations Between Harned and Pitzer Equations: Journal of the Chemical Society, Faraday Transactions 1, v.75, pp.1371-1379.
- 9) Chan, C.Y., Khoo, K.H., and Lim, T.K., 1979, Specific Ionic Interactions in the Quaternary Systems HCl-NaCl-KCl-Water and HCl-NH4Cl-KCl-Water at 25 Degrees C: Journal of Solution Chemistry, v.8, no.1, pp.41-52.
- 10) Cohen, M.D., Flagan, R.C., and Seinfeld, J.H., 1987, Studies of Concentrated Electrolyte Solutions Using the Electrodynamic Balance. 1. Water Activities for Single-Electrolyte Solutions: Journal of Physical Chemistry, v. 91, no. 17, pp. 4563-4574.
- 11) de Lima, M.C.P., and Pitzer, K.S., 1983, Thermodynamics of Saturated Electrolyte Mixtures of NaCl with Na2SO4 and with MgCl: Journal of Solution Chemistry, v.12, pp.187-199.
- 12) Dickson, A.G., 1987, Standardization of the (AgCl + 1/2H2 = Ag + HCl) Cell from 273.15 to 318.15 K: Journal of Chemical Thermodynamics, v.19, no.9, pp.993-1000.
- 13) Downes, C.J., 1975, Thermodynamics of Mixed Electrolyte Solutions- The System H2O-NaCl-CoCl2 and H2O-CaCl2-CoCl2 at 25 Degrees C: Journal of Solution Chemistry, v.4, no.3, pp.191-204.
- 14) Downes, C.J., and Pitzer, K.S., 1976, Thermodynamics of Electrolytes. Binary Mixtures Formed from Aqueous NaCl, Na2SO4, CuCl2, and CuSO4 at 25 Degrees C: Journal of Solution Chemistry, v.5, no.6, pp.389-398.
- 15) Dyrssen, D., and Hansson, I., 1973, Ionic Medium Effects in Seawater- a Comparison of Acidity Constants of Carbonic Acid and Boric Acid in Sodium Chloride and Synthetic Seawater: Marine Chemistry, v.1, pp.137-149.
- 16) Edwards, T.J., Mauer, G., Newman, J., and Prausnitz, J.M., 1978, Vapor-Liquid-Equilibria in Multicomponent Aqueous Solutions of Volatile Weak Electrolytes: AICHE Journal- American Institute of Chemical Engineers, v.24, no.6, pp.966-976.

- 17) Elgquist, B., 1970, Determination of the Stability Constants of MgF+ and CaF+ Using a Fluoride Ion Selective Electrode: Journal of Inorganic Nuclear Chemistry, v.32, pp.937-944.
- 18) Felmy, A.R., and Weare, J.H., 1986, The Prediction of Borate Mineral Equilibria in Natural Waters- Application to Searles Lake, California: Geochimica et Cosmochimica Acta, v.50, pp.2771-2783.
- 19) Filippov, V.K., Anionova, V.A., Fohland, P., and Chajko, I.G., 1982, Thermodynamic Investigation of the System K2SO4-ZnSO4-H2O at 25 Degrees C: Vestnik Leningradskogo Universiteta, Seriya Fiziki i Khimii, no.4, pp.63-67.
- 20) Filippov, V.K., and Antonova, V.A., 1982, Thermodynamic Study of the Rb2SO4-CdSO4-H2O System at 25 Degrees C: Journal of Applied Chemistry of the USSR, v.55, no.6, pp.1157-1161.
- 21) Filippov, V.K., and Barkov, D.S., 1986, Thermodynamic Investigation of the System Cu(NO3)2-Zn(NO3)2-H2O at 25 Degrees C: Vestnik Leningradskogo Universiteta, Seriya Fiziki i Khimii, no.2, pp.98-101.
- 22) Filippov, V.K., Barkov, D.S., and Fedorov, J.A., 1985, The Use of the Pitzer Equation for Calculating Solubility in the System Cu(NO3)2-Ni(NO3)2-H2O at 25 Degrees C: Zeitschrift fur Physikalische Chemie-Leipzig, v.266, no.1, pp.129-134.
- 23) Filippov, V.K., Barkov, D.S., and Fedorov, Yu.A., 1986, Application of the Pitzer Equations to the Solubility of Ternary Aqueous Nitrate Solutions at 25 Degrees C: Journal of Solution Chemistry, v.15, no.7, pp.611-619.
- 24) Filippov, V.K., and Charykov, N.A., 1986, Phase Equilibria in the System Na, CollCl, SO4-H2O at 25 Degrees C: Journal of Applied Chemistry of the USSR, v.59, no.11, pp.2255-2260.
- 25) Filippov, V.K., Charykov, N.A., Cheremnykh, L.M., Rumyantsev, A.V., 1986, Thermodynamic Calculation of the Phase Equilibria in the Na, Mg||Cl, SO4-H2O System at 25 Degrees C: Vestnik Leningradskogo Universiteta, Seriya Fiziki i Khimii, no.3, pp.57-66.
- 26) Filippov, V.K., Charykov, N.A., and Fedorov, Y.A., 1986, NaCl-NiCl2 (CuCl2)-H2O Systems at 25 Degrees C: Zhurnal Neorganicheskoi Khimii, v.31, no.7, pp.1861-1866.
- 27) Filippov, V.K., Charykov, N.A., and Rumaintsev, A.V., 1987, Extension of the Pitzer Method to the Aqueous Salt Systems with Solution Phase Complexing: Doklady Akademii Nauk SSSR, v.296, no.3, pp.665-668.
- 28) Filippov, V.K., Charykov, N.A., and Solechnik, N.D., 1986, Thermodynamics of the System Ni||Cl, SO4-H2O and Co||Cl, SO4-H2O at 25 Degrees C:
 Journal of Applied Chemistry of the USSR, v.58, no.9, pp.1811-1814.
- 29) Filippov, V.K., Charykova, M.V., and Trofimov, Yu.M., 1986, Thermodynamics of the System NH4H2PO4-(NH4)2SO4-H2O at 25 Degrees C: Journal of Applied Chemistry of the USSR, v.58, no.9, pp.1807-1811.
- 30) Filippov, V.K., and Cheremnykh, L.M., 1983, Application of Pitzer Equation to the Solubility Calculation of Systems Na, Mg, Cl-H2O and Na, Mg, SO4-H2O at 25 Degrees C: Vestnik Leningradskogo Universiteta, Seriya Fiziki i Khimii, no.3, pp.32-37.
- 31) Filippov, V.K., and Cheremnykh, L.M., 1984, Calculation of Thermodynamic Functions of the System Na2SO4-K2SO4-H2O at 25 Degrees: Journal of Applied Chemistry of the USSR, v.56, no.7, pp.1382-1385.
- Applied Chemistry of the USSR, v.56, no.7, pp.1382-1385.
 32) Filippov, V.K., and Cheremnykh, L.N., 1984, The Thermodynamic Study of the Mg||Cl, SO4-H2O System at 25 Degrees C: Ukrainskii Khimicheskii Zhurnal, v.50, no.10, pp.1027-1032.
- 33) Filippov, V.K., and Cheremnykh, L.M., 1986, Application of Pitzer's Method to the Solubility Calculation in Na-Cl,SO4-H2O Systems at 25 Degrees C: Vestnik Leningradskogo Universiteta, Seriya Fiziki i Khimii,

- no.1, pp.46-50.
- 34) Filippov, V.K., Dmitriev, G.V., and Iakovleva, S.I., 1980, Application of the Pitzer's Method for Calculation of Component Activities in Mixed-Solutions of Electrolytes Using Solubility Data: Doklady Akademii Nauk SSSR, v.252, no.1, pp.156-159.
- 35) Filippov, V.K., Fedorov, Y.A., and Charykov, N.A., 1983, Solubility in Systems of NaCl-MnCl2-H2O and NaCl-CoCl2-H2O at 25 Degrees C: Zhurnal Neorganicheskoi Khimii, v.28, no.12, pp.3166-3170.
- 36) Filippov, V.K., and Kalinkin, A.M., 1984, Calculation of Isotherms of the K2SO4-Cs2SO4-H2O Solubility System at 25 Degrees C: Zhurnal Neorganicheskoi Khimii, v.29, no.9, pp.2412-2415.
- 37) Filippov, V.K., Kalinkin, A.M., and Vasin, S.K., 1987, Thermodynamics of Phase Equilibria of Aqueous (lithium sulfate + cesium sulfate), (sodium sulfate + cesium sulfate), and (potassium sulfate + cesium sulfate) at 298.15K Using Pitzer's Model: Journal of Chemical Thermodynamics, v.19, pp.185-193.
- 38) Filippov, V.K., and Nokhrin, V.I., 1985, Li2SO4-MeSO4-H2O (Me= Mn, Co, Cu) System at 25 Degrees C: Zhurnal Neorganicheskoi Khimii, v.30, no.2, pp.513-516.
- 39) Filippov, V.K., and Nokhrin, V.I., 1985, Solubility in the NaSO4-CuSO4-H2O System at 25 Degrees C: Zhurnal Neorganicheskoi Khimii, v.30, no.11, pp.2963-2965.
- 40) Filippov, V.K., Nokhrin, V.I., and Kryloya, I.L., 1985, Isopiestic Determination of Li, Mn||SO4-H2O Systems at 25 Degrees C: Vestnik Leningradskogo Universiteta, Seriya Fiziki i Khimii, no.3, pp.45-50.
- 41) Filippov, V.K., Nokhrin, V.I., and Muzalevskaya, A.P., 1985, Thermodynamic Study of Na2SO4-ZnSO4-H2O and Na2SO4-CdSO4-H2O Systems at 25 Degrees C: Zhurnal Neorganicheskoi Khimii, v.30, no.9, pp.2407-2411.
- 42) Filippov, V.K., Nokhrin, V.I., and Nikitin, S.N., 1984, Thermodynamic Study of the System Li2SO4-CdSO4-H2O at 25 Degrees C: Vestnik Leningradskogo, Seriya Fiziki i Khimii, no.3, pp.36-41.
- 43) Filippov, V.K., Veretennikova, G.A., and Nokhrin, V.I., 1985, Thermodynamic Study of the System Na2SO4-NiSO4-H2O at 25 Degrees C: Journal of Applied Chemistry of the USSR, v.57, no.9, pp.1793-1796.
- 44) Filippov, V.K., and Yakovleva, S.I., 1982, Chemistry and Thermodynamics of Solutions. Leningrad University, v.5, p.3.
- 45) Filippov, V.K., Yakovleva, S.I., and Dmitriev, G.V., 1979, Calculation of Activity of Na2SO4-CoSO4-H2O System Components By Pitzer's Method: Vestnik Leningradskogo Universiteta, Seriya Fiziki i Khimii, no.3, pp.58-63.
- 46) Furst, W., and Renon, H., 1982, Effect of the Various Parameters in the Application of Pitzer's Model to Solid-Liquid Equilibrium. Preliminary Study for Strong 1-1 Electrolytes: Industrial Engineering Chemical Process Design and Development, v.21, pp.396-400.
- 47) Gueddari, M., Monnin, C., Perret, D., Fritz, B., and Tardy, Y., 1983, Geochemistry of Brines of the Chott el Jerid in Southern Tunesia-Application of Pitzer's Equations: Chemical Geology, v.39, pp.165-178.
- 48) Harvie, C.E., Moller, N., and Weare, J.H., 1984, The Prediction of Mineral Solubilities in Natural Waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O System to High Ionic Strengths at 25 Degrees C: Geochimica et Cosmochimica Acta, v.48, pp.723-751.
- 49) Harvie, C.E., and Weare, J.H., 1980, The Prediction of Mineral Solubilities in Natural Waters: The Na-K-Mg-Ca-Cl-SO4-H2O System from Zero to High Concentration at 25 Degrees C: Geochimica et Cosmochimica Acta, v.44, pp.981-997.

- 50) Hershey, J.P., Fernandez, M., Milne, P.J., and Millero, F.J., 1986, The Ionization of Boric Acid in NaCl, Na-Ca-Cl and Na-Mg-Cl Solutions at 25 Degrees C: Geochimica et Cosmochimica Acta, v.50, no.1, pp.143-148.
- 51) Holmes, R.F., Baes, C.F.Jr., and Mesmer, R.E., 1979, Isopiestic Studies of Aqueous Solutions at Elevated Temperatures.2. NaCl+KCl Mixtures: Journal of Chemical Thermodynamics, v.11, pp.1035-1050.
- 52) Holmes, R.F., Baes, C.F.Jr., and Mesmer, R.E., 1981, Isopiestic Studies of Aqueous Solutions at Elevated Temperatures.3. {(1-y) NaCl+ yCaCl2}: Journal of Chemical Thermodynamics, v.13, pp.101-113.
- 53) Holmes, R.F., Busey, R.H., Simonson, J.M., Mesmer, R.E., Archer, D.G., and Wood, R.H., 1987, The Enthalpy of Dilution of HCl (aq) to 648K and 40 MPa, Thermodynamic Properties: Journal of Chemical Thermodynamics, v.19, pp.863-890.
- 54) Holmes, R.F., and Mesmer, R.E., 1983, Thermodynamic Properties of Aqueous-Solutions of the Alkali-Metal Chlorides to 250 Degrees C: Journal of Physical Chemistry, v.87, no.7, pp.1242-1255.
- 55) Holmes, R.F., and Mesmer, R.E., 1986, Isopiestic Studies of Aqueous Solutions at Elevated Temperatures.8. The Alkali-Metal Sulfates: Journal of Chemical Thermodynamics, v.18, pp.263-275.
- 56) Izaguirre, M., and Millero, F.J., 1987, The pK* for the Dissociation of TRISH+ in NaClO4 Media: Journal of Solution Chemistry, v.16, no.10, pp.827-834.
- 57) Johansson, O., and Wedborg, M., 1979, Stability Constants of Phosphoric Acid in Seawater of 5-40% Salinity and Temperatures of 5-25 Degrees C: Marine Chemistry, v.8, pp.57-69.
- 58) Khoo, K.H., Chan, C.Y., and Lim, T.K., 1977a, Activity Coefficients in Binary Electrolyte Mixtures HCl+MgCl2+H2O at 298.15K: Journal of Solution Chemistry, v.6, pp.855-864.
- 59) Khoo, K.H., Chan, C.Y., and Lim, T.K., 1977b, Thermodynamics of Electrolyte Solutions. The System HCl+CaCl2+H2O at 298.15 Degrees K: Journal of Solution Chemistry, v.6, no.10, pp.651-662.
- 60) Khoo, K.H., Chan, C.Y., and Lim, T.K., 1978, Activity Coefficients for the System HCl+BaCl2+H2O at 298.15K- Comparison of Scatchard's and and Pitzer's Interpretations: Journal of the Chemical Society, Faraday Transactions 1, v.74, pp.837-845.
- 61) Khoo, K.H., Lim, T.K., and Chan, C.Y., 1978a, Activity Coefficients for HCl +NiCl2+H2O at 298.15 Degrees K and Effects of Higher-Order Electrostatic Terms: Journal of Solution Chemistry, v.7, no.4, pp.291-301.
- 62) Khoo, K.H., Lim, T.K., and Chan, C.Y., 1978b, Activity Coefficients for the System HCl+CoCl2+H2O at 298.15 Degrees K- Effects of Higher-Order Electrostatic Terms: Journal of the Chemical Society, Faraday Transactions 1, v.74, pp.2037-2044.
- 63) Khoo, K.H., Lim, T.K., and Chan, C.Y., 1979a, Activity Coefficients for the System HBr+CaBr2+H2O at 298.15K: Journal of the Chemical Society, Faraday Transactions 1, v.75, pp.1067-1072.
- 64) Khoo, K.H., Lim, T.K., and Chan, C.Y., 1979b, Ionic Interactions in the System HBr+BaBr2+H2O at 25 Degrees C: Journal of Solution Chemistry, v.8, no.4, pp.277-282.
- 65) Khoo, K.H., Lim, T.K., and Chan, C.Y., 1981, Activity Coefficients in Aqueous Mixtures of Hydrochloric Acid and Lanthinum Chloride at 25 Degrees C: Journal of Solution Chemistry, v.10, no.10, pp.683-691.
- 66) Khoo, K.H., Ramette, R.W., Culberson, C.H., and Bates, R.G., 1977,
 Determination of Hydrogen Ion Concentrations in Seawater from 5 to 40
 Degrees C- Standard Potentials at Salinities from 20 to 450/oo: Analytical
 Chemistry, v.49, pp.29-33.
- 67) Kumar, A., 1987, Volume Properties of Aqueous Electrolytes.2. Application

- of the Pitzer Model in Estimating Apparent Molal Compressibility and Expansibility: Journal of Chemical and Engineering Data, v.32, pp.109-112.
- 68) Kuschel, F., and Seidel, J., 1985, Osmotic and Activity Coefficients of Aqueous K2SO4-MgSO4 and KC1-MgC12 at 25 Degrees C: Journal of Chemical and Engineering Data, v.30, pp.440-445.
- 69) Lilley, T.H., and Tasker, I.R., 1983, The Osmotic Coefficients of Aqueous (lithium chloride + nickel chloride) and (tetramethylammonium chloride + nickel chloride) at 298.15K: Journal of Chemical Thermodynamics, v.15, pp.399-400.
- 70) Lim, T.K., Khoo, K.H., and Chan, C.Y., 1980, Activity Coefficients for the System HBr+SrBr2+H2O at 25 Degrees C: Journal of Solution Chemistry, v.9, no.10, pp.785-789.
- 71) Macaskill, J.B., and Bates, R.G., 1978, Activity Coefficient of Hydrochloric Acid in the System HCl-KCl-H2O at 25 Degrees C and Ionic Strengths from 0.1 to 3 Moles/Kg: Journal of Solution Chemistry, v.7, no.6, pp.433-442.
- 72) Macaskill, J.B., White, D.R.Jr., Robinson, R.A., and Bates, R.G., 1978, Isopiestic Measurements on Aqueous Mixtures of Sodium Chloride and Strontium Chloride: Journal of Solution Chemistry, v.7, no.5, pp.339-347.
- 73) Marcus, Y., 1977, The Activities of Potassium Chloride and of Water in Dead Sea Brine: Geochimica et Cosmochimica Acta, v.41, pp.1739-1744.
- 74) Miller, D.J., Rard, J.A., Eppstein, L.B., and Robinson, R.A., 1980, Mutual Diffusion Coefficients, Electrical Conductances, Osmotic Coefficients, and Ionic Transport Coefficients Iij for Aqueous CaSO4 at 25 Degrees C: Journal of Solution Chemistry, v.9, no.7, pp.467-496.
- 75) Millero, F.J., 1982, Use of Models to Determine Ionic Interactions in Natural Waters: Thalassia Jugoslavica, v.18(1-4), pp.253-291.
- 76) Millero, F.J., and Thurmond, V., 1983, The Ionization of Carbonic Acid in Na-Mg-Cl Solutions at 25 Degrees C: Journal of Solution Chemistry, v.12, p.401.
- 77) Moller, N., 1988, The Prediction of Mineral Solubilities in Natural Waters:
 A Chemical Equilibrium Model for the Na-Ca-Cl-S04-H2O System, to
 High Temperature and Concentration: Geochimica et Cosmochimica Acta,
 v.52, pp.821-837.
- 78) Monnin, C., and Schott, J., 1984, Determination of the Solubility Products of Sodium Carbonate Minerals and an Application to Trona Deposition in Lake Magadi (Kenya): Geochimica et Cosmochimica Acta, v.48, pp.571-581.
- 79) Pabalan, R.T., and Pitzer, K.S., 1987, Thermodynamics of Concentrated Electrolyte MIxtures and the Prediction of Mineral Solubilities to High Temperatures for Mixtures in the System Na-K-Mg-Cl-SO4-OH-H2O: Geochimica et Cosmochimica Acta, v.51, no.9, pp.2429-2443.
- 80) Pabalan, R.T., and Pitzer, K.S., 1987, Thermodynamics of NaOH(aq) in Hydrothermal Solutions: Geochimica et Cosmochimica Acta, v.51, no.4, pp.829-837.
- 81) Peiper, J.C., and Pitzer, K.S., 1982, Thermodynamics of Aqueous Carbonate Solutions Including Mixtures of Sodium Carbonate, Bicarbonate, and Chloride: Journal of Chemical Thermodynamics, v.14, pp.613-638.
- 82) Phutela, R.C., and Pitzer, K.S., 1983, Thermodynamics of Aqueous Calcium Chloride: Journal of Solution Chemistry, v.12, no.3, pp.201-207.
- 83) Pitzer, K.S., 1973, Thermodynamics of Electrolytes.1. Theoretical Basis and General Equations: Journal of Physical Chemistry, v.77, no.2, pp.268-277.
- 84) Pitzer, K.S., 1975, Thermodynamics of Electrolytes.5. Effects of Higher-Order Electrostatic Terms: Journal of Solution Chemistry, v.4, no.3, pp.249-265.
- 85) Pitzer, K.S., 1976, Theoretical Considerations of Solubility With Emphasis on Mixed Aqueous Electrolytes: Pure and Applied Chemistry, v.58, no.12,

- pp. 1599-1610.
- 86) Pitzer, K.S., 1979, Theory: Ion Interaction Approach, in R.M. Pytkowicz, (ed.), Activity Coefficients in Electrolyte Solutions, v.1, CRC Press, Inc., Boca Raton, Florida, pp.157-208.
- 87) Pitzer, K.S., 1981, Chemistry and Geochemistry of Solutions at High T and P: (eds.) Rickard and Wickman, 295, v.13-14, p.94.
- 88) Pitzer, K.S., and Kim, J.J., 1974, Thermodynamics of Electrolytes.4. Activity and Osmotic Coefficients for Mixed Electrolytes: Journal of the American Chemical Society, v.96, pp.5701-5707.
- 89) Pitzer, K.S., and Mayorga, G., 1973, Thermodynamics of Electrolytes.2.
 Activity and Osmotic Coefficients for Strong Electrolytes With One or Both
 Ions Univalent: Journal of Physical Chemistry, v.77, no.19, pp.2300-2308.
- 90) Pitzer, K.S., and Mayorga, G., 1974, Thermodynamics of Electrolytes.3. Activity and Osmotic Coefficients for 2-2 Electrolytes: Journal of Solution Chemistry, v.3, no.7, pp.539-546.
- 91) Pitzer, K.S., Olsen, J., Simonson, J.M., Roy, R.N., Gibbons, J.J., and Rowe, L., 1985, Thermodynamics of Aqueous Magnesium and Calcium Bicarbonates and Mixtures with Chloride: Journal of Chemical and Engineering Data, v.30, pp.14-17.
- 92) Pitzer, K.S., and Peiper, J.C., 1980, The Activity Coefficient of Aqueous NaHCO3: Journal of Physical Chemistry, v.84, pp.2396-2398.
- 93) Pitzer, K.S., Peiper, J.C., and Busey, R.H., 1984, Thermodynamic Properties of Aqueous Sodium Chloride Solutions: Journal of Physical and Chemical Reference Data, v.13, pp.1-102.
- 94) Pitzer, K.S., Roy, R.N., and Silvester, L.F., 1977, Thermodynamics of Electrolytes.7. Sulfuric Acid: Journal of the American Chemical Society, v.99, no.15, pp.4930-4936.
- 95) Pitzer, K.S., and Silvester, L.F., 1976, Thermodynamics of Electrolytes.6. Weak Electrolytes Including H3PO4: Journal of Solution Chemistry, v.5, no.4, pp.269-278.
- 96) Pytkowicz, R.M., and Hawley, J.E., 1974, Bicarbonate and Carbonate Ion-Pairs and a Model of Seawater at 25 Degrees C: Limnology and Oceanography, v.19, pp.223-234.
- 97) Rard, J.A., and Miller, D.G., 1981a, Isopiestic Determination of Osmotic Coefficients of Aqueous Na2SO4, MgSO4 and Na2SO4-MgSO4 at 25 Degrees C: Journal of Chemical and Engineering Data, v.26, pp.33-38.
- 98) Rard, J.A., and Miller, D.G., 1981b, Isopiestic Determination of Osmotic and Activity Coefficients of Aqueous MgCl2 Solutions at 25 Degrees C:
 Journal of Chemical and Engineering Data, v.26, pp.38-43.
- 99) Rard, J.A., and Miller, D.G., 1982a, Isopiestic Determination of the Osmotic and Activity Coefficients of Aqueous CsCl, SrCl2, and Mixtures of NaCl and CsCl at 25 Degrees C: Journal of Chemical and Engineering Data, v.27, no.2, pp.169-173.
- 100) Rard, J.A., and Miller, D.G., 1982b, Isopiestic Determination of the Osmotic and Activity Coefficients of Aqueous Mixtures of NaCl and SrCl2 at 25 Degrees C: Journal of Chemical and Engineering Data, v.27, no.3, pp. 342-346.
- 101) Rard, J.A., and Miller, D.G., 1987, Isopiestic Determination of the Osmotic and Activity Coefficients of Aqueous Mixtures of NaCl and MgCl2 at 25 Degrees C: Journal of Chemical and Engineering Data, v.32, pp.85-92.
- 102) Reardon, E.J., and Armstrong, D.K., 1987, Celestite (SrSO4(s)) Solubility in Water, Seawater and NaCl Solution: Geochimica et Cosmochimica Acta, v.51, no.1, pp.63-72.
- 103) Reardon, E.J., and Beckie, R.D., 1987, Modelling Chemical Equilibria of Acid Mine-Drainage- The FeSO4-H2SO4-H2O System: Geochimica et Cosmochimica Acta, v.51, no.9, pp.2355-2368.

- 104) Robinson, R.A., 1980, The Temperature Variation of the Harned Coefficient in the System HC1-NaC1: Journal of Solution Chemistry, v.9, no.7, pp. 449-454.
- 105) Robinson, R.A., and Macaskill, J.B., 1979, Osmotic Coefficients of Aqueous Sodium Carbonate Solutions at 25 Degrees C: Journal of Solution Chemistry, v.8, no.1, pp.35-40.
- 106) Rogers, P.S.Z., and Pitzer, K.S., 1981, High-Temperature Thermodynamic Properties of Aqueous Sodium Sulfate Solutions: The Journal Physical Chemistry, v.85, pp.2886-2895.
- 107) Rosenblatt, G.M., 1979, Estimation of Activity Coefficients in Concentrated Sulfite-Sulfate Solutions: Lawrence Berkeley Laboratory Report, LBL, 9671.
- 108) Rosenblatt, G.M., 1981, Estimation of Activity Coefficients In Concentrated Sulfite-Sulfate Solutions: AICHE Journal, v.27, no.4, pp.619-626.
- 109) Roy, R.N., Gibbons, J.J., Bliss, D.P.Jr., Casebolt, R.G., and Baker, B.K., 1980, Activity Coefficients for Ternary Systems.6. The System HCl+ MgCl2+H2O at Different Temperatures, Application of Pitzer's Equations: Journal of Solution Chemistry, v.9, pp.911-930.
- 110) Roy, R.N., Gibbons, J.J., Ovens, L.K., Bliss, G.A., and Hartley, J.J., 1982, 7. Activity Coefficients for the Systems HCl+CaCl2+H2O at Various Temperatures: Journal of the Chemical Society, Faraday Transactions, v.78, pp.1405-1422.
- 111) Roy, R.N., Gibbons, J.J., Trower, J.K., and Lee, G.A., 1980, Application of Pitzer's Equations on the System HCl+MnCl2+H2O at Various Temperatures.5.: Journal of Solution Chemistry, v.9, no.7, pp.535-551.
- 112) Roy, R.N., Gibbons, J.J., Williams, R., Godwin, L., and Baker, G., Simonson, J.M., and Pitzer, K.S., 1984, The Thermodynamics of Aqueous Carbonate Solutions.2. Mixtures of Potassium Carbonate, Bicarbonate, and Chloride: Journal of Chemical Thermodynamics, v.16, pp.303-315.
- 113) Roy, R.N., Gibbons, J.J., Wood, M.D., Williams, R.W., Peiper, J.C., and Pitzer, K.S., 1983, The First Ionization of Carbonic Acid in Aqueous Solutions of Potassium Chloride Including the Activity Coefficients of Potassium Bicarbonate: Journal of Chemical Thermodynamics, v.15, pp.37-47.
- 114) Roy, R.N., Hufford, K., Lord, P.J., Mrad, D.R., Roy, L.N., and Johnson, D.A., 1988, The First Acidity Constant of Carbon Dioxide in Solutions of Ammonium Chloride from e.m.f. Measurements at 278.15 to 318.15 K: Journal of Chemical Thermodynamics, v.20, no.1, pp.63-77.
- 115) Ruaya, J.R., and Seward, T.M., 1987, The Ion-Pair Constant and Other Thermodynamic Properties of HCl up to 350 Degrees C: Geochimica et Cosmochimica Acta, v.51, pp.121-130.
- 116) Sabar, M., Covington, A.K., Nuttal, R.L., and Goldberg, R.N., 1982, The Activity and Osmotic Coefficients of Aqueous Sodium Bicarbonate Solutions: Journal of Chemical Thermodynamics, v.14, pp.967-976.
- 117) Sadowska, T., and Libus, W., 1982, Thermodynamic Properties and Solution Equilibria of Aqueous Bivalent Transition Metal Nitrates and Magnesium Nitrate: Journal of Solution Chemistry, v.11, no.7, pp.457-468.
- 118) Saluja, P.P.S., Pitzer, K.S., and Phutela, R.C., 1986, High-Temperature Thermodynamic Properties of Several 1-1 Electrolytes: Canadian Journal of Chemistry, v.64, no.7, pp.1328-1335.
- 119) Sankar, M., Macaskill, J.B., and Bates, R.G., 1981, Activity Coefficients of Hydrochloric Acid and Ionic Interactions in the System HCl-CsCl-H2O from 5 to 50 Degrees C: Journal of Solution Chemistry, v.10, no.3, pp.169-179.
- 120) Silvester, L.F., and Pitzer, K.S., 1977, Thermodynamics of Electrolytes. 8. High-Temperature Properties, Including Enthalpy and Heat Capacity, with Application to Sodium Chloride: Journal of Physical Chemistry,

- v.81, no.19, pp.1822-1828.
- 121) Silvester, L.F., and Pitzer, K.S., 1978, Thermodynamics of Electrolytes. 10. Enthalpy and the Effect of Temperature on the Activity Coefficients: Journal of Solution Chemistry, v.7, no.5, pp.327-337.
- 122) Simonson, J.M., Roy, R.N., Roy, L.N., and Johnson, D.A., 1987, The Thermodynamics of Aqueous Borate Solutions 1. Mixtures of Boric Acid with Sodium or Potassium Borate and Chloride: Journal of Solution Chemistry, v.16, no.10, pp.791-803.
- 123) Thiessen, D.B., and Wilson, A.J., 1987, An isopiestic Method for Measurement of Electrolyte Activity Coefficients: AICHE Journal, v.33, no.11, pp.1926-1929.
- 124) Thurmond, V., and Millero, F.J., 1982, Ionization of Carbonic Acid in Sodium Chloride Solutions at 25 Degrees C: Journal of Solution Chemistry, v.11, no.7, pp.447-456.
- 125) Tialowska-Mocharla, H., and Atkinson, G., 1985, Thermodynamics of Concentrated Electrolyte Mixture.6. Activity Coefficients of Aqueous CaCl2-CaBr2 Mixtures at 25 Degrees C: Journal of Physical Chemistry, v.89, pp.4884-4887.
- 126) Torrent, J., Sanz, F., and Virgili, J., 1986, Activity Coefficients of Aqueous Perchloric Acid: Journal of Solution Chemistry, v.15, no.4, pp.363-375.
- 127) Weare, J.H., private communication (from Pitzer, K.S., Olsen, J., Simonson, J.M., Roy, R.N., Gibbons, J.J., and Rowe, L., 1985, Thermodynamics of Aqueous Magnesium and Calcium Bicarbonates and Mixtures with Chloride, Journal of Chemical and Engineering Data, v.30, pp.14-17.)
- 128) Weare, J.H., 1987, Models of Mineral Solubility in Concentrated Brines with Application to Field Observations: Reviews in Mineralogy, Thermodynamic Modeling of Geological Materials: Minerals, Fluids, and Melts, v.17, pp.143-176.
- 129) White, D.R., and Bates, R.G., 1980, Osmotic Coefficients and Activity Coefficients of Aqueous Mixtures of Sodium Chloride and Sodium Carbonate at 25 Degrees C: Australian Journal of Chemistry, v.33, pp.1903-1908.
- 130) White, D.R., Robinson, R.A., and Bates, R.G., 1980, Activity Coefficients of Hydrochloric Acid in HCl/MgCl2 Mixtures and HCl/NaCl/MgCl2 Mixtures from 5 to 45 Degrees C: Journal of Solution Chemistry, v.9, no.7, pp.457-465.
- 131) Whitfield, M., 1975, The Extension of Chemical Models for Seawater to Include Trace Components at 25 Degrees C and 1 atm. Pressure: Geochimica et Cosmochimica Acta, V.39, pp.1545-1557.
 - * Additional references are given in the text

Attachment (C.2 - Summary of Literature	Values of Pitzer	Interaction Parameters for Single Sa	ı] ts
NTERACTIO	060	18		B2
Na+ C1-	0765 (644 (4	0127 (4	
	07650	664 (4	0127 (4	
	0765 (664 (8	0127 (8	
	07970	6495 (0122 (8	
	0754 (770 (9	014 (9	
	0/54 (85)	7 10 18	007 (85	
	90010	795 (46)	014 (46)	
	08305	1900 (1 1 1 1 1	
	0765 (665 (26	0062 (26	
	0765 (664 (25	0121 (25	
	0765 (664 (35	00126 (3	
	10820	3127 (1	02469 (1	
	0765 (664 (24	.00124 (24	
K+ C1-	04835	122 (48	0084 (48	,
	0.48 0.48 0.48 0.48 0.48	122 (49	40000.	(64) 0.
	04827	0887 (8	000	
	0481 (187 (85	.000394 (8	
	0464 (274 (46	004 (46)	
	04453	2839 (5		
	04808	476 (54)	.000788 (5	
	04626	1844 (6	000398	
	050411	95527 (1	001355442	
H+ C1-	1775 (48)	945 (48)	0008 (48)	
	1775 (945 (89	.00080	
	18352	5503 (8	00059 (8	
	1775 (.2945 (85) 27837 (E)	0004 (85	
	17527	7010	014670 (71	
	18104	7779 (6	0007307	
	3729 (886 (61	008 (61	
L1+ C1=	1494	074 (89	0359	
	16832	7721 (5	0 1 1 1 1	
	14847	07 (54)	037	
MgB(0H)4+ C1-	16 (18	1	1 1 1	
	244 (5	-	1	
CaB(OH)4+ CI-	81) 21	1 1	1 1	
Sr+2 C1-	28575	6725 (00130461	
	2834 (26 (85)	00315 (85)	
	27967	2429 (5		
	28994	795 (72	03755 (72)	
	27948	745 (72	003532	
-13	03001	558 (89)	0038 (89)	
)	03449	1336 (8	.00049 (83	
	0332 (429 (85	.000131 (8	
	03352	429 (54)	00	
	0 7 6 6 6 6	00) 44000	0001100	
	.03131 (4)	.065925 (4)	.00030705	
	03178	2762 (5	1 0 0 0	
**************************************	0522 (918 (89 9619 (69	n 1	
	4568	0431 (1	001731 (10)	

B1 (89) (89) (1.37625 (89) (1.37625 (89) (1.37625 (89) (1.37625 (14) (1.	(89) (89) (9) (0) (4)
80 308025 (89) 1.37625 2817 (26) 2.28 1.39125 315892 (14) 1.39125 315892 (18) 1.7280 327325 (89) 1.6422 327225 (89) 1.6425 327225 (89) 1.6425 327225 (89) 1.6425 327225 (89) 1.6425 327325 (89) 1.6425 35235 (49) 1.6815 35235 (49) 1.6815 35235 (89) 1.6516 35235 (89) 1.6516 35235 (89) 1.6516 35235 (89) 1.6516 35235 (89) 1.65175 35093 (25) 1.21197 35093 (25) 1.21197 35235 (89) 1.6516 35235 (89) 1.21197 35235 (89) 1.21197 35235 (89) 1.6140 3159 (89) 1.6140	82)
 ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω	4 (82) 1.7083 (85) 1.608 8 (10) 1.653043 8 (10) 1.6546 2 (5) 5.63766 89) 5.25533 9 (5) 6.14389 4 (5) 25274 3 (10) 25274 2 (10) 22917 (89) 22917 2 (10) 23084 (64) 3975
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3303 3303 3303 3303 3303 3303 300 300 3

(89)0025721 (5)004572 (63)004572	3562 (125)	0396 (89)	0279 (89)0139 (89)00004 (89)00004 (89)1947 (89)	(89) (97) (97) (97) (98) (98) (98) (98) (98) (98) (98) (98	143 (64)	3303 (70)	465975 (89) 1.03425 (89) -107922 (89) 00497 (89) 1.113 (48) (48) (48) (48) (48)	01958 (49)	0148 (83) 1.218 (83)00634 (83 019575 (86) 1.113 (86)00570104	0181 (85) 1.0559 (85) .00202 (8 04210 (5) .77712 (5)	01869 (106) 1.0994 (106) .005549 (1	0187 (37) 1.0094 (37)	01957 (45)	08610 (10) . 13037 (10) 003104 (1	0. (99) (49) (70) (70) (70) (70) (70) (70) (70) (70	000 (85)	04432 (68) .7365 (68) .00181 0927 (55) .603 (55)03661	2210 (48) 3.343 (48) .025 (48) .025 (48) .237 25 (49) .237 25 (49)	2150 (45)	21499 (97) 3.3646 (97) 3.3646 (97) 3.3646 (97) 3.3646 (97)	-39.23 (75 -39.23 (78) 3 1923 (78)54.24 (48)	20000 (49) 2.650 (49) .0 (49) -57.70 (49)57.70 (49)57.70 (49)57.70 (49)57.70 (49)	06) (.50) 0. (.71) 0.	.0029 (48)	59 (66) . 0 (66) 1.735 (66) 08 (66) 08 (66)	.2358 (90) 2.907 .2358 (90) 2.485	21757 (74) 2.62597 (74) .013756 (74) -56.2413 (
80 3816 (89 40950 (5 3648 (63	3562 (12 1748 (89 20243 (5	0396 (89 03297 (5	0279 (89 0624 (89	0 1400	3143 (64) 331125 (8	426975 (8	01958 (48	01958 (49 019575 (8	0148 (83) 019575 (8	0181 (85) 04210 (5)	01869 (10	0187 (37)	01957 (45 0187 (40)	08610 (10	04995 (49	000 (85) 000 (85)	04432 (68 0927 (55)	2210 (48	2150 (85	21499 (9	7	20000 (4	15 (77)	0027 (9	7.59 (66) 7.08 (66)	.2358 (90	21757 (7
ACTION Br-	ξ Ε	L	, , , ,	-	- L	6	S04-2							2-700				S04-2			2-803	1	,	504-2		\$04-2 \$04-2	
INTERAC Ca+2	L. +	Ω	CS + + + + + + + + + + + + + + + + + + +	⊦ 10	Sr+2	00+5	+ + C 10							4				Mg+2			6	5	:	‡		N 1 + Cu+2	

82 -30.7 (90) -40.0 (40)	-41.8+/- 9.2 (102) -42.0+/- 9.2 (103)	-5.72 (48)
CO 00926 (03704 (0182 (9 01836 (01836 (01836 (01836 (00176 (90 00199 (102 00199 (102 001999 (102 001999 (102 001999 (102 001999 (102 00199 (102 002 002 002 002 002 002 002	
B1 .3458 (2 .3450 (3 .9511 (9 .9511 (4 .980 (86 .14630 (00-00-00-00-00-00-00-00-00-00-00-00-00-	22070 23030 30 (890) 30 (893) 0411 (5062 (5062 (5062 (6013 (6013 (60478 (
80 16310 (2 16310 (2 2010 (90 2010 (90 2015 (84) 33089 (1	. 3220 (90) . 2320 (90) . 2568 (102) . 0888 (102) . 0714 (44) . 136275 (89) . 0579 (89) . 040875 (89) . 040875 (89) . 040875 (89) . 04549 (48) . 0554 (94) . 0654 (98) . 0654 (98) . 0864 (88) . 0864 (88) . 0864 (89) . 0864 (89) . 1298 (48)	14982 (5) 1747 (89) 150 (89) 150 (89) 6 (15) 0277 (48) 028 (81) 0490 (16) 0277 (92) 0296 (48) 0296 (13)
- 40 - 40 - 40	S S S S S S S S S S S S S S S S S S S	, , , , , , , , , , , , , , , , , , ,
e + + + + + + 2 E	V N N N N N N N N N N N N N N N N N N N	X NBS CLC

M9+2 HC Ca+2 HC NH4+ HC Na+2 CO K+ CO	HC03- HC03- HC03- C03-2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		CO 	B 2
Mg+2	CO3-2	075 (1 7 (15) 833 (7 180 (1	6 (10 69 (7) 0 (10)	970 (76)	-204.90 (76) -46.0 (107)
C C S S N S N S N S N S N S N S N S N S	C C C C C C C C C C C C C C C C C C C		2.10 (107) 1.439 (114) 3.439 (85) 3.439 (85) 3.4439 (85) 3.4562 (5) 1.80675 (89) 1.80675 (89) 3.3992 (89)		-69.0 (107)

B2

99)	ACTION F	6 0 0	81 .2570 (89)	. 92 . 83 . 400 . 400
4 0.05.4 (107) .0.08 (10.7) -0.08 (1		1141	342 (8	.0105 (89 .0 (75)
4. 45125 (89) 1.7665 (89)005571 (8) 89 89 89 89 89 89 89 89 89 89 89 89 89	44	0554 (89	755 (8	.00118 (8)
4	4	496125 (8	.0085 (8	.00957776 (8
1998 (126) 1265 (126) 126		451125 (8 1747 (89)	. 2931 (89	. 00819 (89)
4		1853 (126 1998 (126 1634 (6)	. 2329 (12 . 2695 (12 . 3465 (6)	0117 (
4	4.	1973 (89	3996 (89	8) 800
4- 361425 (89) 1.57575 (89) 0084406 (89) 4- 33325 (89) 1.722 (89) 0084406 (89) 4- .61132 (89) 1.722 (89) 0084406 (89) 61132 (89) 2.1467 (89) 0153795 (89) 6113 (89) 2.2455 (89) 0153795 (89) 3- 0960 (89) 1.2481 (89) 0153795 (89) 3- 0960 (89) 1.7939 (89) 00072 (89) 3- 0068 (89) 1.7939 (89) 00072 (89) 3- 00815 (89) 1.7939 (89) 00072 (89) 3- 00815 (89) 1.7939 (89) 00072 (89) 3- 00815 (89) 1.7939 (89) 00072 (89) 3- 00815 (89) 1.7940 (89) 00101 (89) 3- 00816 (89) 00101 (89) 00101 (89) 3- 00816 (89) 00101 (89) 00101 (89) 3- 00816 (89) 00101 (89) 00101 (89) 3- 00816 (89) 00101 (89) 00101 (89) 3-	44	0103 (89) 4269 (89)	.0194 (89 .56675 (8	.0131097 (89)
4	4	361425 (8	.57575 (8	.0312576 (89
4- (2.71678 (5)) 2.71678 (5) (5) 4- (6.1325 (6)) 2.04175 (6) (0.153795 (6)) 3- (0.246 (89)) 2.485 (89) (0.153795 (6)) 3- (0.260 (89)) (107) (107) 3- (107) (107) (107) 3- (49) (107) (107) 3- (49) (107) (107) 3- (49) (107) (107) 3- (49) (107) (107) 3- (49) (107) (107) 3- (40) (107) (107) 3- (40) (107) (107) 3- (40) (107) (107) 3- (40) (107) (107) 3- (40) (107) (107) 3- (40) (107) (107) 3- (40) (40) (40) 3- (40) (40) (40) (40) 3-	44	506025 (8 333225 (8	.797 (89) .722 (89)	.0088406 (89
3	4	27386 (5) 611325 (8	.71678 (5	0216851 (89
3- 0960 (89) .2481 (89) 3- 490 (107) 1.76 (107) 490 (107) 1.76 (107) 0.066 (89) 1.783 (89) 0.006 (1 (83) 037 (46) 0.00351 (5) 0.0453 0.004 (46) 0.0057 (46) 0.0057 (46) 0.0722 (46) 0.057 (46) 0.0722 (46) 0.0065 (46) 0.057 (46) 0.0722 (46) 0.0065 (46) 0.057 (46) 0.0722 (46) 0.0065 (46) 0.057 (46) 0.0722 (46) 0.0065 (46) 0.057 (46) 0.057 (46) 0.0065 (46) 0.057 (46) 0.0524 (46) 0.0065 (46) 0.057 (46) 0.0065 (46) 0.0065 (46) 0.057 (47) 0.0065 (48) 0.0065 (46) 0.057 (48) 0.0065 (48) 0.0065 (48) 1.142 (48) 0.0069 (48) 0.0065 (48) 1.142 (48) 0.0069 (48) 0.0065 (48) 1.142 (48) 0.0069 (48) 0.0065 (48) 0.058 (48) 0.0069 (48)	Ö	61/85 (6 0249 (89	.061/5 (6 .2455 (89	0004 (89)
1.00	m c	0960 (89	481 (89	1 1
	'nκ	438 (107	6 (107)	: ! : ! : !
		0068 (89 00661 (8	783 (89 7939 (8	.00072 (8
		003 (46)	337 (46	00013 (4
	- 8	08155 (8	4939 (8 722 (46	00660 (8
. 367 (2) (89) (100 (23) (.05771 (5)	05759 (5	000000000000000000000000000000000000000
. 21082425 (89)	<u>_</u>	367125 (8 29978 (23	.584/5 (89) .19260 (23) .604417E (11	.0206245 (69 .00181 (23)
3- 1119 (89) 30437 (53) 1119 (89) 1119 (89) 30437 (5) 11477 (5) 32487 (5) 11477 (5) 32487 (5) 12274 (5) 2780 (89) 2752 (2) 2782 (89) 1421 (2) 2772 (2) 2772 (89) 1421 (2)	۳-	210825 (8	.40925 (89)	0201419 (89
3-	۱ و	1119 (89)	206 (89 206 (89	.0010 (89)
30789 (89)01736 (89) .00529 (89) .00529 (89) .00529 (89) .00529 (89) .00529 (89) .00529 (89) .00528 (89) .00528 (89) .00528 (89) .00528 (89) .00591 (89) .0	ا ا	1420 (89 12274 (5	780 (89 5821 (5	.00551 (8
3- 0758 (89) 0669 (89) 0558 (89) 3- 0856 (89) .0025 (89) .00591 (89) 3- 0154 (89) .1120 (89) 00003 (89) 3- 01561 (5) .10898 (5) 00003 (89) 3- .3168 (89) 1.43025 (89) 0219344 (89) 34782 (117) 1.369185 (117) 00300697 (21) 3- .134625 (89) .8025 (89) 3- 03225 (89)	3-	. 1421 (2) . 0789 (89 . 07885 (8	.0172 (89 .0172 (89 .01736 (8	.00529 (89 .00529 (89
05431 (5)21042 (5)21042 (8)	11	0758 (89	0669 (89	00591 (8
3- (89) (21) (21) (21) (21) (21) (21) (21) (21) (F)	05431 (5	.21042 (5	.00003
. 28076 (89)	, ,	01561 (5	0898 (5	0219344 (8
		28076 (21 34782 (11	3230 (2 59185 (.008372 (21) .0300697 (11)
		134625 (89 03225 (89	8 (89) 325 (89	.0199245 (89

.30453 (23)

.42877 (23)

B2	.26536 (21)	.30331 (22)
CO .00761554 (0156712 005798 (0241247 0256467 00532981 031544 (00199 (25) 0194525 (10) 0194525 (10) 0194525 (10) 019463 (10) 019
81 6905 (89 577175 (.69125 (89 .2012 (21) .4663475 (.668 (89) .285 (89) .1846667 ((89) (89) (89) (89) (89) (89) (89) (89)
80 311925 (8	348075 (348075 (213015 (213015 (123015 (133005 (133005	28790 353475 353475 1336 (89) 1336 (89) 1400 10151 (89) 1020 (89) 1020 (89) 1020 (89) 1020 (89) 1020 (89) 1020 (89) 1020 (89) 1020 (89) 1020 (80) 1020 (80)
CT 10N N03-	1 1111 m mmmm 0 0000 z zzzz	00 0 000000000000 0 000 0 000000000000
INTERAC CO+2	2 + 2 C C C C C C C C C C C C C C C C C C C	

B2

```
-34.0 (107)
                                                                                                                                                                                                                                                                                       -41.0
-33.0
-61.3
   .00373882 (89)
      B1
1.239 (89)
1.245 (107)
2481 (107)
1.2481 (107)
1.804 (107)
1.0 (108)
1.0 (108)
3.00 (107)
3.00 (107)
3.60 (108)
3.60 (107)
3.60 (107)
3.60 (107)
3.61 (107)
3.71 (107)
3.71 (107)
3.72575 (89)
3.72575 (89)
BO

.09375 (89)

.025825 (89)

.0249 (107)

.490 (107)

.438 (107)

.438 (107)

.051 (108)

.065 (108)

.20 (107)

.24 (108)

.180 (107)

.18 (108)

.180 (107)

.24 (107)

.24 (107)

.25 (107)
   INTERACTION

Ka+ CTO4-2

Ka+ CTO4-2

Ka+ HSO3-

Ka+2

Ka+2

Ka+2

Ka+2

Ka+2

Ka+2

Ka+2

Ka+2

Ka+2

Ka+4

                                                                                                                                                                                                                                                                                                                                                                                                                 $203-2
$205-2
$205-2
$205-2
$205-2
                                                                                                                                                                                                                                                                                                                                                    503-2
                                                                                                                                                                                                                                                                                                                                                 Ca+2
```

(107) (108) (107) (108)

Attachment C.3. -- Summary of literature values of Pitzer interaction parametes for mixed-salt solutions

Attachment C.3 - Summary of Literature Values of Pitzer Parameters for Mixed Salt Solutions

82	}					۰.			-32.74		
COMPATIBILITY DATA B1 CO	4100.		.0055			.0055488		.006507	.00550 .02797 .00550	.00127	.00013
	.2795		1.0994			1.0994 3.0		.2664 1.65075	1.0994 3.3646 1.0994 3.3646	. 2664	.2795
SINGLE SALT BO	.0757		.050			.01869		. 35093	.3150 .3150 .0187	.0765	.003
ν	NaC.	į	Na2S04 K2S04			Na2S04 CaS04		NaC1 MgC:2	Na2S04 NgS04 Na2S04 NgS04	NaC1 HC1	NaC1 NaNO3
WEDIA	NaC1+KC1 NaC1+KC1 NaC1+KC1	Na2504+K2504	Na2S04+K2S04 Na2S04+K2S04	NaNO3+KNO3	NaC1+CaC12 NaC1+CaC12	Na2S04+CaS04	NaC1+MgC12 NaC1+MgC12	NaC1+MgC12 Na2SO4+MgS04	Na2SO4+NgSO4	NaC1+HC1 HC1+NaC1	NaC1+NaNO3 NaC1+NaNO3
PSI	0018 (48) 0018 (49) 0018 (88) 00078 (51) 004 (46)	0022 (88) 010 (48) 010 (49) .010 (88)			.0 (88) .0029 (52) 003 (77) 055 (48)	.012 (77)	0122 (48) 0122 (49) 010 (84) .0 (88) 01 (30)		.00566 (25) .0024 (30)	004 (48) 004 (88) .0105 (9)	012 (88) .0 (56) 0129 (48) 006 (88) 0035 (46)
THETA	012 (48) 012 (49) 012 (88) 0154 (51) 0203 (46)	012 (88) 012 (48) 012 (49) 012 (88)	0303 (31) 0322 (31) 032 (31)	012 (48) 012 (88) 07 (48)	.0 (88)*0078 (52)* .05 (77) .07 (48)	.0 (47)*	.07 (48) .07 (49) .07 (84) .0 (88)*	.07 (48) .07 (49) .07 (49)	ي د	.036 (48) .036 (88) .0279 (9)	. 036 (88) . 036 (56) . 036 (48) . 016 (88) 0279 (46)
-	-10	Br- S04-2	, ,	C03-2 N03-2 C1-	S04-2		-10	S04-2		-13	Br- C104- HS04- N03-2
INTERACTION	±	<u>+</u> +	<u>;</u>	C X X C X X + + + + + + + + + + + + + +	+ Ca+2		+ Mg+2	+ Mg+2		± +	±±±5 ++++
Z	* **	* * * * * *	ž	* * * * * * * * * Z Z Z	+ 6 2		# # Z	† « 2		# # Z	* * * * * * * * * * * * * * * * * * *

Attachment C.3 - continued

c a	3									00100				00329		-30.7				c	.0023	ç	140.00		-48.33		-32.81	-5,829	!	-48.07	5680)		-40.06
COMPATIBILITY DATA	3	.0114	0.						000126	- 0298			012537 .000126	.00179	.001758	.00926		03602		03602	01395	***			.0044	00553	.0290	.00747	.00553	.01140	- 00784	.00550	.00291	.03660
	5	680.	910	40					7554	1 4091	٠,	_ '	1.44975 .2664	1,625			(6	1.391		1.391	1.4677		776.7	_	2.527	1 0004	2.8830	.3468	1.0994	2.6170	2 4076	1.0094	1.2010	2.9070
SINGLE SALT	3	0427	04056	11 - 11					785	3420		Ref. (89	.3582	.3454	.01957	. 16310	Ref. (89)	. 2966	Ref. (89)	. 2966	. 2817	Ref. (89)	. 2340	Ref. (89)	.2340	787	. 1949	0169	.0187	.2053	4456	.0187	.0714	.1702
	N SS C I	NaB(OH)4 NaC1	NaB303(0H)4	Na8405(0H)4						Mac.	i	NaC1	CoC12 NaC1	CoC12	Na2504	CoS04	NaCl	CuC12	NaCl	CuC12	CuC12	Na2504	casas	Na2S04	CuS04	Na 2504	ZnS04	CdC1	Na2504	CdS04	NAC 1	Na2504	C\$2504	N82504 N1504
WEDIA	NaC1+NaH2P04 NaC1+NaH2As04 NaC1+NaHAs04 NaC1+NaAs04 NaC1+NaAC NaC1+NaB(OH)3 NaC1+NaB(OH)3	NaC1+NaB303(0H)4	NaC1+NaB405(0H)4		NaC1+NaBr	NaCI+BaCIZ	NaC1+CsC1	NaC1+MnC12	NaC1+MnC12	7		NaC1+CoC12	NaC1+CoC12		NaC +COC Z Na 2 S O 4 + Co S O 4		Na2SO4+CoSO4 NaC1+CuC12		NaC1+CuC12	01J::J+1JeN	7 - 7 - 7 - 7 - 7	Na2S04+CuS04	Na2504+CuS04	Na2504+CuS04	N - B - 1 - 7 - B - 1	Na2504+70504	NAL-50-4-1	NaC1+CdC12	Na2S04+CdS04		משכודאיכוב	Na2S04+Cs2S04	A025M+A02C+W	N82004+41004
PSI	.0 (131) .0 (75) .0 (75) .0 (75) .0 (75) .0 (75)	024 (18)	.026 (18)		.0 (88)	.0 (88) - 012 (84)	003 (88)		0174 (84) 01275 (35)		02155 (40)	001 (13)	0589 (35)	1,000	008986 (45)		01738 (24) 014 (14)		026 (14)	- 00360 (36)	(97) 96699	011 (14)	0125 (39)	049 (14)	(00)	_		.14913 (27)	01521 (41)	01152 (26)		0035 (37)	(42)	01.60 (43)
THETA	.1004 (131) .228 (75) .122 (75)* .060 (75)* .017 (75) .065 (18)	.12 (18)	.074 (18)		.0 (88)	003 (88)*	.033 (88)	*(88) 0.	.082 (84) nagaz (ag)*	(66) (8060.	.04320 (40)*	016 (13)*	.01289 (35)*	(10)	001939 (24) 001413 (45)*		01939 (24) .0 (14)*		.077 (14)	- 06404 (26)*		.0 (14)*	*(38)	.077 (14)	*(00)	05073 (41)*		00032 (27)	.00032 (41)*	05047 (26)#		.0153 (37)	*(09) 4000	.004) /300.
	H2P04- H2AS04- HAS04-2 AS04-3 AC+ B(0H)3- B(0H)4-	B303(0H)4-	B405(0H)4-2		-1:			-I.J			504-2		•		504-2		13			•		504-2			1	504-2			S04-2 -	-[3	<u>.</u>	S04-2	504-2	204-4
INTERACTION	5555555	-13	-13		ص آ	2+89	Cs+	Mn+2			Mn+2	C0+2			Co+2		Cu+2					Cn+2			7013	70+2	1	Cd+2	Cd+2	NATO	7	Cs+	NATO	7
INTE	* * * * * * * * * * * * * * * * * * *	* 82 22	χ *	!	+ 8 ×	+ 63 2	Na+	Na+			+ BN	+ 60 2			Na+		Na+					Na +			4	, + , a	d E	+ RB +	Na+	1	5	8	6 2	† 5

Attachment C.3 - continued

INTER	INTERACTION		THETA	PSI	MEDIA	SIN	SINGLE SALT		COMPATIBILITY DATA	ŝ
# # Z	N03-	N02-	0144 (46)	0012 (46)	NaNO3+NaNO2	Na NO 3	.003	. 2037	.00013	76
*	Ca+2	-13				N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5	. 1629		
*	Ca+2	504-2	040 (88)* .032 (49) - 040 (47)*	015 (88) .0 (49) .0 (47)	KC1+CaC1Z K2S04+CaS04					
*	Mg+2		.0 (48) .0 (49) .0 (47)*	022 (48) 022 (49) .0 (47)	KC1+MgC12					
*	Mg+2	S04-2	.0 (73)* .0 (48) .0 (49)	05 (73) 048 (48) 048 (49)	KC1+MgC12					
			.0 (47)*	et.	K2504+MgS04	K2S04 MgS04	.04995	.7793 3.3646	.02797	-32.743
*	÷	-13	.005 (48) .005 (88)	011 (48) 007 (88)	HC1+KC1	Ref.(88)				
			.0049 (8)	_	HC1+KC1	HC1	.1775	. 2945	08000.	
			.0068 (8)	0106 (8)	HC1+KC1	HC.	. 1775	.2945	. 00084	
			.0074 (9)	0105 (9)	HC1+KC1	. HC	.04835	. 2945	. 00084	
			(6) 8800.	0131 (9)	HC1+KC1	Ž ਦੇ ਨੂੰ	.04835	. 2122 . 2945 . 2122	00084 .00080 00084	
* * * * *	±±±5	Br- S04-2 HS04- N03-2	.005 (88) .005 (48) .005 (48) .016 (88) 000815 (46)	021 (88) .197 (48) 0265 (48) 006 (88) 00023 (46)	KC1+KNO3 KC1+KNO3	, KC)	. 0464	. 2274	0004	
	;	6				KN03	0802	.0722	.0065	
*	-	H2P04-	.1004 (131) .1004 (95) .10 (86)	.06 (131) 0105 (95) 01 (86)	KC1+KH2P04 KC1+KH2P04 KC1+KH2P04	Ref.(89) KC1 KH2P04	.04835	.2122	00084	
* * * 3	8r- 8a+2		.0 (88) 072 (88)* .010 (84)		KC1+KBr KC1+BaC12 KC1+BaC12					
<u> </u>	+ + C) 2	504-2	.0 (88) 0049 (36)	0015 (86) 0016 (36)	K2S04+Cs2S04	K2S04 Cs2S04	.0500	.7790	.00291	
K+ Ca+2	Co+2	S04-2 C1-	0982 (19)* 0819 (19)* .007 (48)	0328 (19) 0411 (19) 012 (48)						
Ca+2	Mg+2	S04-2	.010 (88) .007 (48)		MgC12+CaC12					
			.007 (49)	.05 (49) .0 (47)	Ca2SO4+Mg2SO4	Ca2504	. 200	2.65 3.3646	.0	-57.70
Ca+2	-13	N03-	.016 (88)	017 (88)	CaC12+Ca(NO3)2	ר ס ס ת		,		7.1.10

ć	7 9						
SINGLE SALT COMPATIBILITY DATA	3					.00827	.00080 00301 .00080
COMPATIB	<u>.</u>					.3564	. 2945 . 1918 . 1918
IGLE SALT	26		0=03	216 Bef (80)	Ker. (69)	. 1960	. 1775 . 0522 . 1775 . 0522
NIS			Ref.(89) but CO=0				
			Ref.(8	HC104		HB. NH4B.	HC1 NH4C1 HC1 NH4C1
WEDIA	CaC12+HC1	HC1+CaC12 HC1+CaC12 CaC12+CoC12	MgC12+Mg(NO3)2 MgC12+HC1 HC1+MgC12 MgC12+HC1 MgC12+HC1 HC1+MgC12 HC1+MgC12	HC104+NaC104 HC104+NaC104	HBr+MgBr2 HBr+CaBr2 HBr+CaBr2 HC1+BaC12 HC1+BaC12 HC1+BaC12 HC1+BaC12	HCI+BBC12 HBr+BBB-2 HBr+NH4Br HCI+CoC12 HZSO4+FeHSO4 HCI+LCI HBr+11Br	HC104+LC104 HC1+CSC1 HC1+NH4C1 HC1+NH4C1 HC1+NH4C1 HC1+SrC12 HC1+SrC12 HC1+SrC12 HC1+SrC12
PSI	015 (48) .016 (110) .0008 (110)	2000	.0 (88) 011 (48) .001 (109) .2775 (130) .0122 (109) .039 (58) 0014 (61) .0396 (58)	- E	005 (110) .0163 (63) .0 (70) .0 (84) .024 (88) .0137 (110)	0001 (61) .0057 (64) .0 (86) .0064 (61) .0493 (61) .0143 (103)	0017 (88) 019 (88) .0 (88) 0091 (9) 0125 (9) .018 (88) .003 (84) .0178 (61)
THETA	.092 (48) 0333 (110)* .0612 (110)	၁၀၀၅	.016 (88) .10 (48) .062 (109) 2257 (130) 024 (109)* 459 (58)* .0897 (61) .0459 (58)*	.10 (48) .036 (88) .107 (126)		. 0763 (61) . 0719 (64) 019 (86) . 0787 (61) . 0597 (61) . 0 (103) . 015 (88)	· - 0
	-13	-13	N03- C1-	HS04- C104-	- LO	Br- NH4+ C1- HS04- C1- Br-	-10 -10 -10 -10 -10 -10 -10 -10 -10 -10
INTERACTION	*	Co+2 MgOH+	- + + - + + - + - + - + - + - + - + - +	+ # N	M9+2 CB+2 BB+2	Ba+2 Br- Co+2 Fe+2 Li+	CS+ NH4+ NH4+
INTER	Ca+2	Ca+2 Mg+2	M 8 + 2 + 2 + 5	жg+2 н+	<u> </u>	<u> </u>	<u> </u>

INTERACTION	THETA	PSI	WEDIA	NIS	SINGLE SALT BO		COMPATIBILITY DATA B1 CO	82
-[3	.0 (88)* .0834 (111) .075 (84) .0694 (61)	.0 (88) 0090 (111) 007 (84) 0006 (61)	HC1+MnC12 HC1+MnC12 HC1+MnC12 HC1+MnC12					
-:			HC1+N1C12					
U02+2 C104-	0732 (6)*		HC104+U02(C104)2	HC104	.1634	3465	.0117	
Sr+2	.051 (102)	0021 (102)	NaC1+SrC12	NaCl SrC12	.0765	2664	.00127	
	0084 (72)*		NaC1+SrC12					
A1+3	.00940 (100)* .185 (84)	00323 (100) .013 (84)	NaC1+SrC12 HC1+A1C13	HC1				
	.216 (2)	• • •	HC1+A1C13	A1C13				
S04-2 Na+	.02 (48)	.0014 (48)						
	.030 (14)	C_{i}	NaC1+Na2S04					
	·	.004 (14)	NaC1+Na2S04	NaCI Na 2504	Ref. (89)	~~		
	035 (88)*	.007 (88)	NaC1+Na2S04					
	045 (25)*	.007 (25)	NaC1+Na2S04	NaC1	.0765	. 2664	.00127	
‡	.030 (79)	.0 (79) .0 (88)	KC1+K2S04					
		~						
		-						
	045 (33)*		KC1+K2S04	Pitz.Param.	6	,		
	02 (86)*	007 (86)	KC1+K2S04	K21 K2S04	04835	. 2212.	00084	
	.030 (14)	005 (14)	KC1+K2S04	Ref. (14)				
S04-2 Ca+2	. 030 (79) . 02 (48) . 02 (49)	-5.0 (79) 018 (48) .0 (49)						
	02 (47)*	.0 (47)	CaC12+CaS04	CaC12	.3159	1.614 2.65	00034	-57 70
S04-2 Mg+2	.02 (48)	004 (48)				}	2	
		0 (88)	MgC12+MgS04					
	02 (86)*	007 (86)	MgC12+MgS04	MgC12	.35235	1.6815 3.343	.00519193	-37,23
	.02 (84)	014 (84)	MgC12+MgS04		! !) - -		
	056 (32)*	.0129 (32)	MgC12+MgS04	MgC12	.3509	1.6508	.00651	
				MgS04	.2150	3.3646	.02797	-32.74
	.030 (14) - 045 (20 27)*	020 (14)	#gC12+#gS04	Ref.(14) Woc12	3509	1,6508	00610	
				MgS04	.3150	3.3646	.02797	-32.74

C		-48.33												35136	53354	
	~ :	03602			72100.		-,00084	.0012193	.0042374	.0042374	.0052 .00127 .0052	00084	. 00050 00084	.02429	02156	.0044
COMPATIBILITY DATA		2.527 1.391	7.5		. 2664	.044	.2122	.026461	1.4679 .26461	1.4679	.2664 .510	•	1.433	2.06641	2.34470	. 253
SINGLE SALT	. 2966	. 2340			.0765	.028	.04835		.040822	.040822	.0362 .0765 0362	.04835	.1288	.1288 .41908 Ref.(90)	.44104 Ref.(90)	.0362
S	CuC12	CuC12	1000		NBC1	NaHCO3	NaHCO3 KC1 KHCO3	Na C	NB2C03 NBC1	Na2CO3	Na2CO3	KC1	K2C03	60012 Co012 CoS04	N1C12 N1S04	NaOH Na2CO3
WEDIA	CuC12+CuS04	CuC12+CuS04	NaC1+NaOH	KC1+K0H	NaC1+NaHC03	NaC1+NaHCO3	KC1+KHC03	NaC1+Na2C03	NaC1+Na2CO3	NaC1+Na2C03	NaC1+Na2C03	KC1+K2C03	KC1+K2C03	CoC12+CoS04	N1C12+N12S04	NaOH+Na2CO3
PSI	.031 (14)	.043 (14)		006 (48) 008 (88)	025 (48) 015 (48) 0143 (81)		0037 (112)	096 (48) .0085 (48) .0503 (129)	.0431 (47)	.016 (81)	.006 (81)	.004 (48)	.0073 (112)	.08718 (28)	.02911 (24) .07202 (28)	0094 (48) 0677 (48) 0425 (48) 005 (48) 005 (48) 005 (48) 005 (48) 005 (48) 005 (48) 007 (48) 017 (48) 017 (48) 017 (48) 017 (48) 017 (48)
THETA	.030 (14)	02 (14)*	006 (48) 006 (48) 050 (88)	050 (48) 050 (88)	~ 4	_	063 (112)	.03 (48) 02 (48) 1605 (129)*	2343 (47)*	053 (81)	092 (81)*	02 (48) 053 (112)	092 (112)*	18140 (28)*	045 (24) 16242 (28)*	.0 (48) .0 (48) .0 (48) .0 (48) 0 (48) .0 (48) .0 (48) .0 (48) .0 (48) .0 (78)* .0 (78)* .0 (78)*
INTERACTION	S04-2 Cu+2		44		HC03- Na+		HCO3- K+	HCO3- Mg+2 CO3-2 Na+				C03-2 K+		Co+2 S04-2	N1+2 S04-2	HSO4- Na+ HSO4- K+ HSO4- Mg+2 HSO4- Mg+2 OH- K+ HCO3- Na+ HCO3- Na+ CO3-2 K+ CO3-2 K+ CO3-2 K+ CO3-2 K+ CO3-2 K+ CO3-2 K+ CO3-2 K+ CO3-2 K+
INTER	-l 0		÷ : : : : :	- 5	15		- 13	-13 C1-				-13		-t ɔ	-1.3	\$04-2 \$04-2

Attachment C.3 - continued

INTER,	INTERACTION		THETA	PSI	MEDIA	S	SINGLE SALT COMPATIBILITY DATA	COMPATIB1	LITY DATA	8.2
HC03-	HCO3- CO3-2 Na+ HCO3- CO3-2 K+	X X + X + X	04 (48)	.002 (48)			3	5	}	4
	i))		.089 (112)	_	KHC03+K2C03	KHC03 K2C03	0107	.0478	.00050	
			063 (112)*	.013 (112)	кнсоз+к2соз	KHC03	0107	.0478	.00050	
L1+	* 8	-t2	.012 (88)	003 (88)	L1C1+NaC1))		
+	* *	N03-2	.012 (88)	0072 (88)	L1N03+NaN03					
÷	Na+	C104-	.012 (88)	0080 (88)	L1C104+NaC104					
‡	*	-l.	022 (88)	010 (88)	L1C1+KC1					
÷	-	N03-2	.016 (88)	003 (88)	L1C1+L1N03					
‡	Ba+2	c1-	070 (88)*	.019 (88)	L1C1+BaC12					
			.0 (84)	_	L1C1+BaC12					
+	Cs+	-l.	~.095 (88)	0094 (88)	L1C1+CSC1					
- ;	Cs+	S04-2	1242 (37)	.0088 (37)	L12S04+Cs2S04	L12S04	1.1363	1.2705	-,00399	
						Cs2S04	.0714	1.2010	.00291	
- ;	Cd+2	S04-2	.0 (42)*	.0 (42)	L12S04+CdS04	L12S04	. 1363	1.2705	. 00399	
						Cd2S04	. 2053	2.6170	01140	-48.07
+	N1+2	c1-	*(69) 650	.047 (69)	L1C1+N1C12	6	but CO=0			
L †	Mn+2	S04-2	.0 (40)*	.0 (40)	L12S04+MnS04	L12S04	. 1363	1,2705	00399	
						MnS04	. 2065	2.9511	.01636	-40.0
Cu+2	N+2	N03-2	.01314 (22)	003909 (22)	Cu(NO3)2+N1(NO3)2	Cu(N03)2	. 28076	1.73230	00838	
						N1 (NO3)2	. 28790	1.43724	00189	.30381
Cu+2	2u+2	N03-2	.00664 (21)	00141 (21)	Cu(NO3)2+Zu(NO3)2	Cu(N03)2	. 28076	1.73230	008372	
						Zu(N03)2	.3015	1.2012	005798	. 26536
Cs+	8#+2	-13	150 (88)*	.0 (88)	CsC1+BaC12					
4	0440	6.00	*(00) 9(0)	(00) (00)	01000110000	700040	05773	1108	c	
2		1		(03) 00 (0.		CdS04	2081	2 6023	01032	-48.07
Rb+	Co+2	504-2	3058 (34)*	.0466 (34)	Rb2S04+CoS04	Rb2504	.0579	1.1108	000036	
						CoS04	. 1631	3.3458	.00926	-30.7
NH4+	S04-2 H2P04	H2P04-	.01837 (29)*	00427 (29)	NH4H2PO4+(NH4)2SO4 NH4H2PO4	NH4H2P04	07043	41564	.00669	
						(NH4)2S04	. 03905	. 66379	00082	

* - Higher order electrostatic terms not included. Values of theta and psi not consistent with PHRQPITZ.

Attachment C.4 Temperature dependence of single-salt parameters					
Attachment C.4 Temperature dependence of single-salt parameters					
Attachment C.4 Temperature dependence of single-salt parameters					
Attachment C.4 Temperature dependence of single-salt parameters					
	Attachment C.4	Temperature	dependence	of single-salt	parameters

		dB1/dT	dCO/dT	dB2/dT
	.159E-4 (12	.005E-4 (12	0.54E-5 (121	
80	.008946 (12 .692E-4 (12	.79E-4 (121)	4.655E-5 (12) 9.30E-5 (12)	
+ \$04-2	.367E-3 (12	.6325E-3 (1	4.879037 (12	
- I +	8.355E-4 (121)	8.28E-4 (121)	00479 (108) -8.35E-5 (121)	
L	.163E-4 (11	.964E-4 (11	5.58E~5 (118	
1 1	.361E-4 (12 00F-4 (121	34F-4 (121	-18.94F-5 (121)	
HCO3	.00E-3 (81)	.10E-3 (81)		
C03-	1.79E-3 (81	2.05E-3 (81		
104	2.96E-4 (12	2.9/E-4 (12	.23E~5 (121	
<u>-</u> د	.35E-4 (12	.07E-4 (12	-9.29E-5 (12	
703	5.59E-4 (12	4.37E-4 (12	•	
03-	0.66E-4 (12	0.57E-4 (12		
	1.79E-4 (11	9.38E-4 (11	1010	
- L	39F-4 (12	7.40E-4 (12	-7.004E-5 (121)	
0	.44E-3 (12	6.6975E-3 (
1	.914E-4 (1	1.86E-4 (12	-9.44E-5 (121)	
1 0	.14E-4 (12	.44E-4 (12	5.95E-5 (121	
ے د	. 996E-3	36E-3 (11		
)	.788E-3 (8	2.051E-3 (8		
C104-	.60E-4 (1	0.07E-3 (12		
6.0	7.06E-4 (. 19E-4 (39.7E-5 (121)	
103	9.87E-4 (1	1.8E-4 (121		
H2P04-	6.045E-4 (8.6E-4 (121)	-10.11E-5 (121)	
ກ - ວ່າ	3.081F-4 (1.419E-4 (12	.213E-5 (12	
	3.081E-4 (.419E-4 (11	3.106E-5	
L	2.049E-4 (.467E-4 (12	5.685E-5 (12	
, =	9055-4	31E-4 (121	.32E-5 (121	
) <u> </u>	.19425E-3	.775E-3 (12	-1.6493266 (1	
4	.429E-3 (.6525E-3 (
1 20	. US625E-3 60F-3 (1	.8625E-3 (1	523E-3 (121	-2 53F-1 (121)
יט	.52275E-3 (1	.5E-3 (121)	-3.5266952 (121)	
03-	.51525E-3 (.4925E-3		
-	.1725E-3 (12	.9E-3 (1	-1 565F-4 (82)	
6 0	.52275E-3 (.0375E-3 (
0		.46E-2 (121)	(121)	-5.16E-1 (121)
20.0	8925E-3	18756-3	9.6243 (.	
2 0	779E-4	.58E-4 (121)	2,10E-5 (121)	
1	.5794E-3 (11	.071E-3 (1	.05E-3 (114	
+ C03-2	1E-3 (1	4.36E-3 (
H2P0	1.51E-4 (12	.8E-4 (121	-2.84E-5 (121)	
- 1	.522E-4 (12	5.06E-4 (12		
LC	./80E-4 ()	0.35E-4 (12		

	dB2/dT			-4.73E-1 (121) -3.33E-1 (121)	-5.22E-1 (121)	42 (102)	
inved	dC0/dT	-12.25E-5 (121) -4.06E-5 (118)	-3.8236801 (121)	4.80E-3 (121) 3.97E-3 (121) -3.8554999 (121)	2.61E-3 (121) -3.5903348 (121) (121)	3.0E-3 (102) -3.1077344 (121) -1.5379573 (121)	-3.3357764 (121) -4.520E-5 (121) -2.813E-5 (121) -2.3334525 (121) -7.712E-5 (121)
Attachment C.4 - continued	dB1/dT	14.7E-4 (121) 15.0E-4 (121) 21.07E-4 (118) 28.44E-4 (121)	34.775.4 (121) 5.975.4 (121) 4.76255.3 (121)	2.38E-2 (121) 2.33E-2 (121) 2.33E-2 (121) 5.0925E-3 (121)	1.71E-2 (121) 5.3625E-3 (121) 2.8425E-3 (121) 6.4356E-3 (121)	27.0E-3 (102) 5.3925E-3 (121) 12.4725E-3 (121) 3.2325E-3 (121) 6.78E-3 (121)	5.025E-3 (121) 5.366E-4 (121) 6.636E-4 (121) 1.41E-3 (121) 7.009E-4 (121)
	dB0/dT	76E-4 (121) 8.28E-4 (121) 7.030E-4 (118) 7.80E-4 (121)	26 - 4 (1 26 - 4 (1 36 - 1 36 - 3 (1	10E-3 (12 E-3 (12 SE-3 (13	-2.79E-3 (121) .54525E-3 (121) .717E-3 (121)	-2.9E-3 (102) 1.143E-3 (121) 17E-3 (121) 6405E-3 (121) -33825E-3 (121)	.39675E-3 (121) -1.685E-4 (121) -1.819E-4 (121) .5055E-3 (121) .386E-4 (121)
		1 - 6	1 0	- 00-	S04-2 C104-	2000 0000 0000 0000 0000 0000 0000 000	00-
		\$ 00 00 00 00 00 00 00 00 00 00 00 00 00	+ + + + :	* * * *	5011	00000000000000000000000000000000000000	* + + + + +

Attachment C.5. -- Summary of analytical expressions for temperature

(and pressure) dependence of selected single-salt

Pitzer interaction parameters

Attachment C.5 - Summary of analytical expressions for temperature (and pressure) dependence of selected stacked

rameter - 22 - 23 - 23 - 25 - 25 - 25 - 25 - 25	42 2.3765786E-6 (54,2) HCl (115,4) L1Cl (54,2) 2 -773.62 .0 -4.5174 .0 02 8.1556E-3 -1.546E-4 -2.8525E-6 .0 .28799 .307 -374.50 .0 -4.1319 .0 06 1.0855E-2 6.36E-4 -9.2990E-7 .0 4 .003710 -7 -374.50 .0 -7 -374.50 .0 -7 -374.50 .0 -374.50 .0 -374.50 .0 -374.50 .0 -374.50 .0 -374.50 .0 -377.1E-9
Solution NaC1 (120,5) 0765 -777.03 -777.03 -4.4706 -3.3158E-6 -3.3158E-6 -11.0715E-6 -2. 00127 -2. 33.317 -4.655E-5 -4.655E-5 -11.5.90 -1.0715E-6 -21.0715E-6 -123.337 -3.337 -3.337 -9.09421 -3.590 -14.655E-5 -14.655E-5 -14.655E-5 -14.655E-5 -14.655E-5 -18514	KCI (54,2) CsCI (54 .04808 -1290.0 -4,7062 -8,4279 .010072 .018502 -3,7599E-6 -6,7942E-6 .0 .0476 .0 .0429 303.9 -38.0 1.066 .0 .0 .01306 .0 .001306 .0 .001306
Parameter Number 1 2 2 3 4 4 4 5 5 5 6 6 6 6 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8

	Atta	Attachment C.5 - continued		
r 0 m	MgSO4 (79,6) -1.0282 8.450E-3 -2.33667E-5	Na2S04 (79,10) -1.72FE-2 1.7828E-3 9.133E-6	K2S04 (79,7) .0 7.476E-4	MgC12 (79,9) 5,93915E-7 -9,31654E-4 576066
4 D a	2.1575E-8 6.8402E-4 21400	.0 -6.552	4.265E-3 -3.088	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
o ~ ·	7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-96.90	0.0218	2.801695-5
- 2	-7.9596E-1 9.4564E-1	5.61E-3	6.85E-3	-1.09438E-2
т	o c	-5.7513E-4 1 11068	5.576E-5 -5.841F-2	2.60135
4 W	1.1028E-2	-378.82	0.	•
· Ø I	3.3646	0.	06	9 8 9 9 1 3 1 3
, ,	1.05416-1	1861.3 1.1745E-2	.0 9.1547E-3	2.41831E-7
. 2	-8.9316E-4	-3.3038E-4	o.	-2.49949E-4
ო	2.516-6	1.85794E-5 -3 9200E-2	.0.	3.353ZUE-Z
1 rv	-8.7899E-5	14.2130		1 1
9	.006993	0.	o.	
,	1	-24.950	0.1	: ;
- ^	1.05415-1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
4 m	-2.7642E-4	* * * * * * * * * * * * * * * * * * * *	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	:
4	0.	1 1 1 1 1 1		• • •
സ യ	-2.1515E-1 -32.743	! ! ! ! ! !		
•				
	MgC12 (11)	HC1 (53)		
- (5.93915E-7	. 1769U -0 140E-2		
7 6	-9.51654E-4 .576066	.0		
4		-4.034E-4		
ក ។	2 G0169F-5	6.02E-5 2973		
- 2	-1.09438E-2	16.147		
. С	2.60135	-1.7631E-2		
4 n	; ;	.0 7 20E-5		
) (-	2,41831E-7 (2**3/2C)			
2	_			
m •	5.95320E-2 (2**3/2C)	/2C) .0 -3 036E-E		
4 rv		.0		
	NaC1 (79,8)	;	ç	
•	80	81 110 21066	-6 1084599	
- ^	-656,81518 24.86913	-4.8309327E-1	4.0217793E-1	
• m	5.3812753E-5	0.	2.2902837E-5	
4	-5.5887470E-8	0.	ō.	
L U	6.589326E-12	o c	.0 -7 5354649F-2	
۰ ۲	1,1109914E-2	1.4068095E-3	1.5317673E-8	

		Caso4 (77) .15400 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
CO -9.0550901E-8 .0 .0 -1.5386008E-8 8.6926600E-11 .0 3.5310414E-1 -4.331425E-4 .0 .0 -9.1871455E-2 5.1904777E-4	C0 -1.6686897E+1 4.05349778E-4 4.5364961E+2 -5.1714017E-2 2.9680772 -6.5161667E-3 -1.05530373E-6 2.3765786E-6 8.9893405E-10 -6.8923899E-1 -8.1156286E-2	CaC12 (77) -9.41895832d+01 -4.04750026d-02 2.34550368d+03 1.70912300d+01 -9.22885841d-01 1.51488122d-05 -1.39082000d00 0.0 3.47870000d-02 0.0 3.47910000d-02 0.0 0.0 0.0
81 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	81 4.6286977E+2 .0 -1.0294181E+4 .0 -8.5960581E+1 2.3905969E-1 .0 -1.079584E-4 .0	Na2S04 (77) 8,16920027d+01 3,011049570d-02 -2,32193726d+03 -1,43780207d+01 -6,66496111d-01 -1,03923656d-05 .0 1,00463018d+03 5,77453682d-01 -2,18434467d+04 -1,89110656d+02 -2,035505488-01 -3,23949532d-04 1,46772243d+03
NaC1 (79,8) B0 -2.6573399E-7 1.7460070E-10 1.0462619E-14 -5.3070129E-6 8.6340233E-10 -4.1785962E-13 -1.57936 2.2022821E-3 -1.3105503E-7 -6.3813683E-11 9.7065780 -2.6860396E-2 1.5344744E-5 -3.2153983E-9	NaOH (79,11) B0 2.7682478E+2 -2.8131778E-3 -7.3755445E+3 3.7012540E-1 -4.9359970E+1 1.0945106E-1 7.1788733E-6 -4.0218506E-5 -5.8847404E-9 1.1931122E-1 2.4824963	NaC1 (77) 1,437832044-01 5,607674064-03 -4,221852364+02 -2,51226677400 0 -2,617181354-06 4,4385450800 -1,70502337400 -4,830606854-01 1,406774794-03 1,193119894+02 0 0 -4,23433299400
8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 2 & 4 & & C & & & & C & C & & & & & C & C	08

Pond + 4000	ככייייי
-	ŀ
4	٠
++001400++4	
ć	2
4	ز
*	į

		Attac	Attachment C.5 - continued		
		NaC1 (77)	Na2504 (77)	CaC12 (77)	CAS04 (77)
S	•	-1 005887144-01	-8 07816886d+01	~	0
3	۰ ،	30-be1000300 t-	- 3 EAE01106d-00	-1 36264728d-D2	
	4 (*	8 611855A34D0	2.034381/200 02 2.024388304+03	7 64582238d+D2) C
	٠,	000000000000000000000000000000000000000	2.021000000.00 4.041010000000.00	7. C13022200. C	
	† 1	1.248809540-02	10.40.01.00.00	0.0000000000000000000000000000000000000	
	D.	٥.	-9.169/4/40d-02	-3.2/3//82d-U	·.
	9	3.41172108d-08	1.43946005d-05	5.69405869d-06	o.
	7	6.83040995d-02	-2.42272049d00	-5.36231106d-01	0.
	α	2 939226114-01		0	0
6	•	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
79	-	\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 1 1		1
	7	1 1	1 1 1 1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	ო	1 1 1	1 ! ! !	1 ! ! !	1 1 1
	4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4 1 1 1 1	6 6 1 1 1 I
	ת	1 1 1 1	# # # # # # # # # # # # # # # # # # #	1 1 2	1 1 1 1
	ט מ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1 1	1 1 1 1 1
	۸ د	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1 1	1 1 1 1
	- 00	4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1 1 1	1 1
	١				
	Ä	Equations			
	£	8(0)=q1	(T-Tr)+q5(T**2-Tr**2) **2-Tr**2)		
		C0=d11+	14(1-1r)+q15(1**2-1r**2	•	
	5)		(T-Tr)+p5(T**2-Tr**2)+p	6 ln(T-260)	
	က်	B(0)=03	U36+U8P)T+(U37+U9P)T**2	+U20/(T-227)+(U38+U10P)/(6	47-T)
		B(1)=U22+U23/T+U24 1n T+U25T+U26T**	2		
		CO=U39+U11P+(U40+U12P)/T+U29 in T+(U41+U13P)T+(U42+U14P)T**2+U32/(T-227)+U33/(647-T)	U41+U13P)T+(U42+U14P)T*	*2+U32/(T-227)+U33/(647-T)	
	4	8*=01+0	-Tr)+05(T**2-Tr**2)		
	£	B(0)=01	(T-Tr)+a5(T**2-Tr**2)		
	ì	0 (4)			
		0(1)=40+49(1-11)+410(1++2-11++2)	44(+ +1)		
			(1-1.)		
	စ်) MgS04			
		() =	0+298++4/3 -298++2/2 +4/	3(1++3) 12+298++4/41-298++3	6
	7	K 26 04	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
			C##-T+T/PO+(C##-TC T/C#	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
			Tr-263)*2]}+07{1/(680-T)+(Tr**2-680T)/[T(680-Tr)*	•2]}
	α				
	ì	f(T)=01/T+02+03P+04P**2+05P**3+061n	G1)+(07+080+09P**2+010P	**3)T+(011+012P+013P**2)T*	*2
		1 (1014-0150+0160+03)/(F-23)-(118-0190+0200+03-0120+03)/(F30-T)	-227)+(018+019P+020P**2	+0210**3)/(630-T)	ı
	ć	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1 1017 1017 017 177	(1,000)	
	ก	7 TBC - C T T T T T T T T T T T T T T T T T			
	(7000			
	5	Nazsu4			,
		+(1)=Q1+Q2(1r-1r**2/1)+Q3(1**2+21r**3/1-31r**2)+Q4(1+1r**2/1-21r)+Q5[1n(1/1r)+1r/1-1] +O6(1/(1-263)+(2631-1r**2)/[1(1r-263)**2])+O2(1/(680-1)+(1r**2-6801)/[1(680-1r)**2])	#3/[-3[r**2]+Q4(1+1r**2 Tr-263]**2]}+07{1/(680-	/ -z r]+q5[n(/ r]+ r/ - T]+(Tr##2-680T]/[T(680-Tr)	**2]}
	11)	2			•
	-		Q7P)T+(Q8+Q9P)T**2+Q10/	(T-227)+(Q11+Q12P)/(647-T)	
	•	And and the state of the state			

numbers in parentheses following designation of a sait correspond to reference number (Attachment C.1) and equation number given below.

Attachment C.6 - Sources of data in file PITZER.DATA

TZER. DATA	0.008946 (120) -3.3158E-6 (120) 5.794E-4 (121) -1.943E-4 (121) -1.725E-4 (121)	-3.081E-4 (121) -1.685E-4 (121) 0.717E-3 (121)	0.6405E-3 (121) 7.692E-4 (121) 7.39E-4 (121) -2.049E-4 (121) -5.625E-5 (121)	-1.819E-4 (121) -0.32775E-3 (121) -0.33825E-3 (121) 2.367E-3 (121) 1.44E-3 (121) -0.69E-3 (121)	0.5055E-3 (121) -2.9E-3 (102)	7.00E-4 (121)	0.996E-3 (81) 1.79E-3 (81) 1.788E-3 (81)	6.1608E-5 (120) 1.0715E-6 (120) 10.71E-4 (121) 3.6525E-3 (86)
5 Sources of data in file PITZER. DATA21 22 31 34 35 40 76 85 86	-777.03 (120) -4.4706 (120)							
Attachment C.6 9 11 12 14 15 16 3	0.0765 (48) 0.04835 (48) 0.35235 (48) 0.3159 (48)	-0.1 (48) 0.1775 (48) 0.1494 (89) 0.28575 (89) 0.335925 (89)	0.327225 (89) 0.2628 (89) 0.0073 (89) 0.0569 (89) 0.1960 (89) 0.43268 (89)	0.1748 (89) 0.33125 (89) 0.31455 (89) 0.01958 (48) 0.0295 (48) 0.221 (48) 0.2 (48)	0.136275 (89) 0.220 (102) 0.2568 (103) 0.2065 (40) 0.0454 (48) -0.0003 (48) 0.2145 (48) 0.2065 (48)	0.0864 (48) 0.1298 (48) -0.1747 (48) 0.015 (89) 0.7777 (48)	0.026 (48) 0.329 (48) 0.4 (48) 0.12 (75) 0.0399 (48) 0.1488 (48)	0.2664 (49) 0.2122 (48) 1.6815 (48)
21 6 7 8	2222	ָלָלָלָלָלָלָלָ	CC	BR- BR- S04-2 S04-2 S04-2 S04-2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Z	HC03- HC03- HC03- HC03- C03-2 C03-2	כר- כר- נר-
ECIES	MA+ KK+ KG+2 CA+2	MGDH+ H+ LI+ SR+2 FE+2	0	L C C C C C C C C C C C C C C C C C C C	K K K K K K K K K K K K K K K K K K K	CA++++	M K K K K K K K K K K K K K K K K K K K	NA+ K+ MG+2

אומרחושפעו כיס - כסתוושתפס	(4B) 3.9E-3 (121)	7 1017	1.419E-4 ((89) 2.500t-4 (121) (89) 2.8425E-3 (121)	(68)	(68)	3.2325E-3 (10.79E-4 (17.40E-4 (1) 4-20/E-4 (1)	3.8625E-3 (6.03/5E=3	6.636E-4 (6.78E-3 (1		1) 63.081.0E-3 (1)		1.41E-3 (12	27.0 (1	103)	(40)	(8)	(48)		3)	(40)	1.34E-4 (121)		(48)	(*		1,106-3 (81)			2.05E-3 (81)	2 - 100.4	-0.253 (-0.516 (12		-0.42 (1	-0.42 (1	-0.42 (1	<u>-</u>	3) -0.42 (102) 3) 19) (48) 33 317 (120) 0 00421 (120) -4 GEEF-E ((48) (48) (48) (48) (48) (48) (48) (48)	-0.42 (102) (33) (13) (14) (148) (120)	-0.42 (102) (33) (148) (48) (48) (48) (48) (48) (48) (48) (
		1.658 (4	3074	.66725	1.53225	.55025	.49625		0.2222	10000	1.75275 (89)	1.013 (8	0.2547 (1,7115 (1.56975 (89)	0 44025	3.343 (4	3, 1973 (48)	1.2705 (89)	2.88 (10	3.063 (1	2.9511 (0.398 (48)	0.1735 (7.729 (4	2.53 (48)	3 48 (103)	0.253 (4	0.32 (48)	-0.2303 (48)	0.14 (89)	1.2 (89)	-0.013 (48)	0.6072	2.977 (4	1.389 (48)		-37.23 (4		-41.8 (48	<u>.</u>	01) 0.24-	001	-40.0 (40 -5.72 (40	-40.0 (40 -5.72 (40	-40.0 (40 -5.72 (41 0.00127	-40.0 (40 -5.72 (4) -0.00127 -0.00084	(40 (40 (40 (40 (40 (40 (40 (40 (40 (40	(40 (40 (40 (40 (40 (40 (40 (40 (40 (40
	٦ ت	ָרָ <u>י</u>	֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	ָר ָ	טר-	၂ (<u>.</u>	, a	Y 6	, , ,	<u>,</u>	2	- 22	- 46	2 2 2	504-2	504-2	504-2	504-2	S04-2	S04-2	504-2	HS04-	HS04-	HS04-	1004 - 4004	HS04-	-HO	-HO	-H0	-HO	OH-	HC03-	HC03-	HC03-	C03-2	•	S04-2	S04-2	504-2	2772	2040	S04-2	S04-2 0H-	S04-2 0H-	304-2 0H- CL- CL-	04-2 04-2 01-10 01-10 01-10	04-2 04-2 01- 01- 01- 01-	22-72 004-2 01-2 01-2 01-3
	CA+2	# # # # # # # # # # # # # # # # # # #	<u>+</u>	SR+2	FE+2	MN+2	BA+2	+ V :	<u></u>		Z+5W	CA+2	+1	SR+2	BA+2	ł Z 3	MG+2	CA+2	-11+	SR+2	FE+2	NN+2	+ V	+ (* :	MG+2	CA+2	FF+2	NA +	<u>*</u>	CA+2	-11+	BA+2	* 4 +	MG+2	CA+2	4 4 4 4	B 2	MG+2	CA+2	SR+2		FE+2	M + 2	KN+2 CA+2	FE+2 MN+2 CA+2 CO	CA+2 CA+2 CO NA+ K+	CO CA+2 NA+ + + 2 NA+ + + + 2 NA+ + + 2	CA+2 CA+2 CO NA+ K+ MG+2 CA+2	CO C

		121	-7.004E-5 (121) -5.685E-5 (121)		-2.813E-5 (121)		-4.879037E-4 (121)	Ξ	(101)	3.0E-3 (10			-18.946-5 (121)																												
	-0.0204972 (89) -0.0193782 (89)	0.00116 (89)	0.00827 (89)	0.00312 (89)	0.0053 (89)	0.00122506 (89)	-0.01595/6 (89) 0.00497 (48)	0.025 (48)	0.0438 (48)	0.019 (102)	0.0209 (103)	0.01636 (40)	0.0044 (48)	-0.008 (48)	`	-0.0015 (48)	(70)	-0.012 (48)					0.007 (48)	0.1 (48)	0.02 (48)	-0.006 (48)	-0.05 (48)	0.03 (48)	_	m	0.01 (48)		-0.1 (48) -0.04 (48)		0.1 (48)		0.183 (48)		0.097 (48)	-0.003 (48)	
-1:1:				 		80 c				504-2			<u> </u>		C03-2	C03-2	4	+ +	* 4 X	AA+	*	*	MG+2	#G+ Z	- CL-	cr-	ل -				504-2	504-2	HC03-)	H2C03	H2C03	H2C03	H2C03	H2C03	HZC03	3
SR+2 FE+2	MN+2 BA+2	+ 4 +	żż	MG+2 CA+2	1+1	SR+2	8 + Z N + Z	MG+2	÷ :	SR+2	FE+2	MN+2	+ + + ×	: *	+ AN	*	THETA	KG+2	CA+2	±	CA+2	÷	CA+2	t	504-2	HS04-	-HO	HC03-	-HO	-H0	HC03-	2-503	C03-2	LAMDA	† V	¥ +	7 4 7		504-2	HS04-	

-0.0022 (88) -0.010 (48) -0.003 (48) 0.003 (48) -0.005 (48) -0.012 (48) -0.015 (48) -0.015 (48) -0.015 (48)		
BR- 504-2 CO3-2 CL- SO4-2 CL- CL- BR- HSO4-	CCL- SO4-2 CCL- SO4-2 HSO4-2 CCL- CCL- CCL- CCL- CCL- CCL- CCL- CC	
+ + + Q D D D D D D D D D D D D D D D D	CA+2 MG+2 MG+2 H+++++++++++++++++++++++++++++++++++	HC03- HC03- C03-2 C03-2 HS04- HS04- HC03- HC03- C03-2 C03-2 C03-2 C03-2 C03-2 C03-2 C03-2
+ + + + + + + + + + + + + + + + + + +	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CC- CC- CC- CC- CC- CC- CC- SO4-2 SO

Attachment D	Listing of	the source of	code to progr	ram PHRQPITZ
			<u> </u>	

	PROGRAM PHRQPITZ	00010
С	*********************************	00020
		00030
C	PROGRAM PHRQPITZ	00040
C	•	00050
С	L.N. PLUMMER, D.L. PARKHURST, G.W. FLEMING, AND S.A. DUNKLE	00060
00000000		00070
С	VERSION CURRENT - NOVEMBER, 1988	08000
С		00090
С	**********	00100
С		00110
C		00120
\$INSE	RT COMMON.BLOCKS	00130
	OPEN (UNIT=11, FILE='PHRQPITZ.DATA', STATUS='OLD')	00140
	MAXT=30	00150
	MAXS=250	00160
	MAXT1=31	00170
	MAXM=20	00180
	MAXEQ=50	00190
	DO 10 I=1,MAXS	00200
40	NSP(I)=0	00210
10	CONTINUE	00220
	IFILE=11	00230 00240
	CALL RDATA(IFILE) CALL INITPZ	00250
20	CONTINUE	00260
C	SINGLE SIMULATION LOOP	00200
C	CALL READ	00280
	CLOSE (UNIT=11)	00290
	ISTEP=0	00300
С	SOLVE INITIAL SOLUTIONS	00310
	DO 40 ISOL=1,2	00320
	IF (ISOLV(ISOL).EQ.0) GO TO 40	00330
	JSOL=ISOL	00340
	CALL SOLN(JSOL)	00350
	IESPEC=IOPT(2)	00360
	IF (IOPT(2).GE.2) IESPEC=0	00370
	CALL PICK1	00380
	CALL PTOT	00390
	CALL KTEMP	00400
	CALL MODEL	00410
	IF (IOPT(2).LT.2) GO TO 30	00420
	IESPEC=LNEG	00430
	IF (ELECT.LT.ODO) IESPEC=LPOS	00440
	CALL PICK1	00450
	CALL KTEMP	00460
	CALL MODEL	00470
20	TOTAL(ISOL, IESPEC)=TOT(IESPEC) CONTINUE	00480
30		00490
	IF (IASPEC.GT.O) TOTAL(ISOL, IASPEC)=TOT(IASPEC)	00500
	CALL THORIT(T) TH(ISOL)=T	00510 00520
	THOR=T	00520
	DIFFZ(ISOL)=ELECT	00540
	~***	UFCOO

```
CALL PSPEC
                                                                             00550
      CALL PLOOK
                                                                             00560
   40 CONTINUE
                                                                             00570
      IF (IOPT(3).EQ.0) GO TO 20
                                                                             00580
C
                                                                             00590
           TAKE REACTION STEPS
      DO 50 ISTEP=1,MAXO(1,NSTEPS)
                                                                             00600
      CALL STEP
                                                                             00610
      CALL PTOT
                                                                             00620
      CALL PICK2
                                                                             00630
      CALL KTEMP
                                                                             00640
      CALL KMINO
                                                                             00650
      CALL MODEL
                                                                             00660
      CALL PPHASE
                                                                             00670
      CALL PLOOK
                                                                             00680
      CALL PTOT
                                                                             00690
      CALL PSPEC
                                                                             00700
   50 CONTINUE
                                                                             00710
      CALL SAVE
                                                                             00720
      GO TO 20
                                                                             00730
      END
                                                                             00740
C
                                                                             00750
      BLOCK DATA
                                                                             00760
C
                                                                             00770
C
                                                                             00780
С
      SEE SUBROUTINE PITZER
                                                                             00790
C
                                                                             00800
      IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
                                                                             00810
      INTEGER TRANS(40), IN(20)
                                                                             00820
      LOGICAL LELEM(4:30)
                                                                             00830
      DOUBLE PRECISION LAM(40,20), BCX(4,20,21:40)
                                                                             00840
      DOUBLE PRECISION PSI(40,40,40), BC(4,20,21:40,5), THETA(40,40)
                                                                             00850
      COMMON / MX1 / BC
                                                                             00860
      COMMON / MX3 / BCX, OTEMP
                                                                             00870
      COMMON / MX6 / LAM, TRANS, PSI, IN
                                                                             00880
      COMMON / MX7 / THETA
                                                                             00890
      COMMON / MX8 / AK, BK, DK
                                                                             00900
      COMMON / MX9 / ALPHA
                                                                             00910
      COMMON / MXO / B
                                                                             00920
      COMMON / PI1C / SPECS.NEUTRL
                                                                             00930
      COMMON / PI1 / M1, M2, M3
                                                                             00940
      COMMON / PEL / LELEM
                                                                             00950
      CHARACTER *8 SPECS(40).NEUTRL(20)
                                                                             00960
      DIMENSION ALPHA(5), Z(40)
                                                                             00970
      DIMENSION AK(0:20,2),BK(0:22),DK(0:22)
                                                                             00980
C
                                                                             00990
C
      LINES 01020-01300 FROM HAAR, GALLAGHER, AND KELL (1984)
                                                                             01000
                                                                             01010
      COMMON /ACONST/ GASCON, TZ, AA, ZB, DZB, YB
                                                                             01020
      COMMON /NCONST/ G(40), II(40), JJ(40), NC
                                                                             01030
      COMMON /ELLCON/ G1,G2,GF,B1,B2,B1T,B2T,B1TT,B2TT
                                                                             01040
      COMMON /BCONST/ P(10),Q(10)
                                                                             01050
      COMMON /ADDCON/ ATZ(4), ADZ(4), AAT(4), AAD(4)
                                                                             01060
      DATA ATZ/2*64.D1,641.6D0,27.D1/,ADZ/3*.319D0,1.55D0/,AAT/2*2.D4
                                                                             01070
     1,4.D4,25.D0/,AAD/34.D0,4.D1,3.D1,1.05D3/
                                                                             01080
      DATA GASCON/.461522DO/,TZ/647.073DO/,AA/1.DO/,NC/36/
                                                                             01090
      DATA G1,G2,GF/11.D0,44.333333333333D0,3.5D0/
                                                                             01100
```

```
DATA P/.7478629D0.-.3540782D0.2*0.D0..007159876D0.0.D0.-.003528426 01110
     1D0.3*0.D0/
                                                                          01120
      DATA Q/1.1278334D0,0.D0,-.5944001D0,-5.010996D0,0.D0,.63684256D0,
                                                                          01130
     1 4*0.DO/
                                                                          01140
      DATA G/-.53062968529023D3,.22744901424408D4,.78779333020687D3
                                                                          01150
     1,-.69830527374994D2,.17863832875422D5,-.39514731563338D5
                                                                          01160
     2,.33803884280753D5,-.13855050202703D5,-.25637436613260D6
                                                                          01170
     3,.48212575981415D6,-.34183016969660D6, .12223156417448D6
                                                                          01180
     4,.11797433655832D7,-.21734810110373D7, .10829952168620D7
                                                                          01190
     5,-.25441998064049D6,-.31377774947767D7,.52911910757704D7
                                                                          01200
     6,-.13802577177877D7,-.25109914369001D6, .46561826115608D7
                                                                          01210
     7,-.72752773275387D7,.41774246148294D6,.14016358244614D7
                                                                          01220
     8,-.31555231392127D7,.47929666384584D7,.40912664781209D6
                                                                          01230
     9,-.13626369388386D7, .69625220862664D6,-.10834900096447D7
                                                                          01240
     A,-.22722827401688D6,.38365486000660D6,.68833257944332D4
                                                                          01250
     B,.21757245522644D5,-.26627944829770D4.-.70730418082074D5
                                                                          01260
     C,-.225D0,-1.68D0,.055D0,-93.0D0/
                                                                          01270
      DATA II/4*0,4*1,4*2,4*3,4*4,4*5,4*6,4*8,2*2.0.4.3*2.4/
                                                                          01280
      DATA JJ/2,3,5,7,2,3,5,7,2,3,5,7,2,3,5,7,2,3,5,7,2,3,5,7
                                                                          01290
     1,2,3,5,7,1,3*4,0,2,0,0/
                                                                          01300
      DATA M1, M3, M2 / 2*0,20 /, LELEM / 27*. FALSE. /
                                                                          01310
      DATA BK, DK / 46*0.0D0 /
                                                                          01320
      DATA BC, LAM, THETA / 10400*0.0D0 /
                                                                          01330
      DATA BCX / 1600*0.0 /, OTEMP / 0.0 /
                                                                          01340
                                                                          01350
      DATA B / 1.2D0 /
C
                                                                          01360
C
      AK IS USED TO CALCULATE HIGHER ORDER ELECTROSTATIC TERMS IN
                                                                          01370
C
                                                                          01380
      SUBROUTINE PITZER
                                                                          01390
      DATA AK
              / 1.925154014814667,-.060076477753119,-.029779077456514
                                                                          01400
     1,
                 -.007299499690937,0.000388260636404,0.000636874599598
                                                                          01410
     2,
                 0.000036583601823, -.000045036975204, -.000004537895710
                                                                          01420
     3,
                 0.000002937706971,0.000000396566462,-.000000202099617
                                                                          01430
    4,
                 -.000000025267769,0.000000013522610,0.000000001229405
                                                                          01440
                 -.00000000821969,-.00000000050847,0.00000000046333
                                                                          01450
     6,
                 0.0000000001943,-.00000000002563,-.00000000010991
                                                                          01460
     7,
                 0.628023320520852,0.462762985338493,0.150044637187895
                                                                          01470
     8,
                 -.028796057604906,-.036552745910311,-.001668087945272
                                                                          01480
                 0.006519840398744,0.001130378079086,-.000887171310131
     9,
                                                                          01490
                 -.000242107641309.0.000087294451594.0.000034682122751
     Α,
                                                                          01500
     В,
                 -.000004583768938,-.000003548684306,-.000000250453880
                                                                          01510
     С.
                 0.000000216991779,0.000000080779570,0.000000004558555
                                                                           01520
     D,
                 -.00000006944757,-.000000002849257,0.000000000237816/
                                                                          01530
      DATA ALPHA / 2.0D0, 1.4D0, 12.0D0, 2.0D0. 50.0D0 /
                                                                          01540
                                                                          01550
      END
      SUBROUTINE MODEL
                                                                          01560
$INSERT COMMON.BLOCKS
                                                                          01570
      CALL SET
                                                                          01580
      ITER=1
                                                                          01590
      ITER1=0
                                                                          01600
   10 CONTINUE
                                                                          01610
      ITER1=ITER1+1
                                                                          01620
      IF (IOPT(8).EQ.1) WRITE (6.25) ITER.ITER1
                                                                          01630
  25 FORMAT(/' BEGINNING OF ITERATION ',14,' SUB-ITERATION ',14,'.')
                                                                          01640
      DO 20 N=1, LASTS
                                                                          01650
      LG(N) = 0.0D0
                                                                          01660
```

```
01670
  20 CONTINUE
                                                                            01680
      CALL PITZER(M, LG, AW, MU, IOPT(10))
                                                                            01690
      TOT(3) = AW
                                                                            01700
      LA(3)=DLOG10(AW)
      IF (IOPT(8).EQ.1) WRITE (6,15) MU, AW
                                                                            01710
   15 FORMAT (' AFTER SUBROUTINE PITZER '.
                                                                            01720
       ' MU ='.1PD15.7.' AW'.0PF15.7)
                                                                            01730
      CALL ZEROAR
                                                                            01740
      CALL AOMOD
                                                                            01750
                                                                            01760
      CALL CHECK(ISTAT)
      IF (ISTAT.EQ.O) THEN
                                                                            01770
         RETURN
                                                                            01780
      ELSE IF (ISTATLEQ.1) THEN
                                                                            01790
                                                                            01800
         KMIN=NMINS
                                                                            01810
         CALL SOLVE
         CALL RESET
                                                                            01820
                                                                            01830
         ITER=ITER+1
                                                                            01840
         ITER1=0
         GO TO 10
                                                                            01850
                                                                            01860
      ELSE IF (ISTAT.EQ.2) THEN
                                                                            01870
         CALL RESET
         GO TO 10
                                                                            01880
                                                                            01890
      END IF
      STOP 'SUBROUTINE MODEL, UNKNOWN STATUS'
                                                                            01900
                                                                            01910
      END
      SUBROUTINE SET
                                                                            01920
                                                                            01930
$INSERT COMMON.BLOCKS
      LA(1)=DLOG1O(TOT(1))
                                                                            01940
                                                                            01950
      LA(2)=DLOG10(TOT(2))
                                                                            01960
      LA(3) = 0.0D0
      PH=-LA(1)
                                                                            01970
                                                                            01980
      IF(LA(1).GT.-1.ODO) LA(1)=-1.ODO
      M(1)=1D1**(LA(1))
                                                                            01990
      LG(1)=0.0
                                                                            02000
      DO 20 I=4, MAXS
                                                                            02010
      M(I) = 0.000
                                                                            02020
                                                                            02030
      LG(I) = 0.0
   20 CONTINUE
                                                                            02040
                                                                            02050
      MU=0D0
      DO 10 I=4, LASTT
                                                                            02060
      IF (IIN(I).LE.O) GO TO 10
                                                                            02070
      IF (TOT(I).LE.O.ODO) TOT(I)=1D-10
                                                                            02080
      IF (I.EQ.IASPEC) THEN
                                                                            02090
C
              SET CARBON SPECIES
                                                                            02100
         M(15) = TOT(I) * 1D-3
                                                                            02110
         IF (PH.LT.6.3) M(35)=TOT(1)*0.8
                                                                            02120
                                                                            02130
         IF (PH.LT.10.3.AND.PH.GE.6.3) THEN
                                                                            02140
            M(34)=TOT(1)*0.8
            MU=MU+0.5*M(34)
                                                                            02150
         END IF
                                                                            02160
         IF (PH.GE.10.3) M(15)=TOT(I)*0.8
                                                                            02170
                                                                            02180
                                                                            02190
         M(I)=TOT(I)
                                                                            02200
      END IF
      MU=MU+M(I)*ZSP(I)*ZSP(I)*0.5DO
                                                                            02210
                                                                            02220
      LA(I)=DLOG10(M(I))
```

```
10 CONTINUE
                                                                            02230
      RETURN
                                                                            02240
                                                                            02250
      END
      SUBROUTINE GAMMA
                                                                            02260
$INSERT COMMON.BLOCKS
                                                                            02270
C
                                                                            02280
С
              THIS SUBROUTINE IS NOT USED
                                                                            02290
C
                                                                            02300
      SAVE DSUM
                                                                            02310
C
           CALCULATE IONIC STRENGTH
                                                                            02320
      DOLDMU=MU
                                                                            02330
      SUM=M(1)
                                                                            02340
      MU=M(1)
                                                                            02350
      DO 10 I=4.LASTS
                                                                            02360
                                                                            02370
      IF (SFLAG(I).EQ.0) GO TO 10
                                                                            02380
      SUM=SUM+M(I)
      MU=MU+M(I)*ZSP(I)*ZSP(I)
                                                                            02390
   10 CONTINUE
                                                                            02400
                                                                            02410
      IF (ITER.EQ.1) GO TO 20
      IF (SUM-DSUM.LT.1D0) GO TO 20
                                                                            02420
                                                                            02430
      SUM=DSUM+1D0
                                                                            02440
   20 CONTINUE
      DSUM=SUM
                                                                            02450
                                                                            02460
      MU=MU*0.5
                                                                            02470
      MU=DMIN1(MU, 1D1)
      IF (ITER.EQ.1) GO TO 30
                                                                            02480
      IF (DABS(DOLDMU-MU).LE.O.75DO) GO TO 30
                                                                            02490
      MU=DOLDMU+((MU-DOLDMU)/DABS(MU-DOLDMU))*0.5D0
                                                                            02500
                                                                            02510
   30 CONTINUE
      MUHALF = DSORT (MU)
                                                                            02520
C
                                                                            02530
           ACTIVITY OF WATER
      AH20=1.0-SUM*0.017
                                                                            02540
      IF (SUM.GT.40.0D0) AH20=0.32
                                                                            02550
      LA(3) = DLOG10(AH20)
                                                                            02560
      TOT(3) = AH20
                                                                            02570
C
           CALCULATE ACTIVITY COEFFICIENTS
                                                                            02580
      AMU=-A*MUHALE
                                                                            02590
      BMU=B*MUHALF
                                                                            02600
      CMU = -A*(MUHALF/(1.0+MUHALF)-0.3*MU)
                                                                            02610
      ZCHRG=0.1*MU
                                                                            02620
                                                                            02630
      LG(1) = AMU/(1.0 + DHA(1) *BMU)
      IF (10PT(6).EQ.1) LG(1)=CMU
                                                                            02640
                                                                            02650
      LG(2)=0.0D0
                                                                            02660
      LG(3)=0.0D0
      DO 70 I=4.LASTS
                                                                            02670
      IF (SFLAG(I).EQ.0) GO TO 70
                                                                            02680
      IF (DABS(ZSP(I)).LE.1.0D-40) GO TO 40
                                                                            02690
      IF (GFLAG(I).EQ.1) GO TO 50
                                                                            02700
      IF (DHA(I).LE.ODO) GOTO 60
                                                                            02710
      IF (IOPT(6).EQ.1) GO TO 60
                                                                            02720
      LG(I)=AMU*ZSP(I)*ZSP(I)/(1.0+DHA(I)*BMU)
                                                                            02730
                                                                            02740
      GO TO 70
   40 LG(I)=ZCHRG
                                                                            02750
      GO TO 70
                                                                            02760
   50 LG(I)=AMU*ZSP(I)*ZSP(I)/(1.0+ADHSP(I,1)*BMU)+ADHSP(I,2)*MU
                                                                            02770
      GO TO 70
                                                                            02780
```

```
60 LG(I)=CMU*ZSP(I)*ZSP(I)
                                                                            02790
                                                                           02800
   70 CONTINUE
           LG FOR CARBONIC ACID
                                                                            02810
                                                                           02820
      RETURN
      END
                                                                            02830
      SUBROUTINE AOMOD
                                                                            02840
                                                                            02850
$INSERT COMMON.BLOCKS
                                                                            02860
      DIMENSION OLDG(250), GAMMA(250), DELGAM(250)
      COMMON /GBLOCK/ OLDG,OLDMU,OLDAW,GAMMA,DELGAM
                                                                            02870
                                                                            02880
      DIMENSION DM2(30)
C
                                                                            02890
С
              INITIALIZE VARIABLES FOR THIS ITERATION
                                                                            02900
C
                                                                            02910
      ELECT=0.0D0
                                                                            02920
      THSOLN=0.0D0
                                                                            02930
                                                                            02940
      DALKS=ODO
      IF(ITER.LE.1) THEN
                                                                            02950
                                                                            02960
         OLDMU=0.0D0
                                                                            02970
         DO 7 I=1,LASTS
         OLDG(I) = 0.99DO
                                                                            02980
                                                                            02990
         CONTINUE
                                                                            03000
      END IF
                                                                            03010
      DMU=MU-OLDMU
      IF(DABS(DMU).LE.1.OD-40) DMU=1.ODO
                                                                            03020
C
              SET GAMMA ARRAY
                                                                            03030
                                                                            03040
      DO 8 I=1,LASTS
      GAMMA(I) = 1D1**LG(I)
                                                                            03050
    8 CONTINUE
                                                                            03060
      SUM=M(1)
                                                                            03070
C
              CALCULATE DELTA ACTIVITY OF WATER PER MOLE SOLUTE
                                                                            03080
                                                                            03090
      DO 9 I=4, LASTS
                                                                            03100
      IF (SFLAG(I).EQ.0) GO TO 9
                                                                            03110
      SUM=SUM+M(I)
    9 CONTINUE
                                                                            03120
      DAW=-(1DO-TOT(3))/SUM
                                                                            03130
      IF (IOPT(8).GT.O) WRITE(6,4) DAW
                                                                            03140
    4 FORMAT(' DELTA ACTIVITY WATER PER MOLE SOLUTE '.1PD12.4)
                                                                            03150
      DAW=DAW/TOT(3)
                                                                            03160
C
              INITIALIZE ACTIVITY OF WATER AND IONIC STRENGTH ARRAYS
                                                                            03170
      DO 2 I=1,50
                                                                            03180
      AR(50,I) = OD0
                                                                            03190
                                                                            03200
      AR(30,I) = OD0
      AR(I,30) = OD0
                                                                            03210
    2 CONTINUE
                                                                            03220
C
                                                                            03230
C
              SET ACTIVITY OF MASTER SPECIES USING MOLALITY AND GAMMA
                                                                            03240
C
                                                                            03250
      IF(IESPEC.NE.1) M(1)=1D1**(LA(1)-LG(1))
                                                                            03260
C
              HOLD HYDROXIDE CONSTANT FOR ENTIRE ITERATION IF PH > 12
                                                                            03270
      IF(M(1).GT.1D-12.AND.M(31).LT.5D-3) THEN
                                                                            03280
         LA(1)=DLOG1O(M(1))+LG(1)
                                                                            03290
         LM(31)=LKSP(31)+LA(3)-LG(31)-LA(1)
                                                                            03300
         M(31)=1D1**LM(31)
                                                                            03310
      ELSE
                                                                            03320
         IF(IESPEC.EQ.1) THEN
                                                                            03330
            LA(1)=LKSP(31)+LA(3)-LM(31)-LG(31)
                                                                            03340
```

```
LM(1)=LA(1)-LG(1)
                                                                            03350
            M(1)=1D1**LM(1)
                                                                            03360
         END IF
                                                                            03370
      END IF
                                                                            03380
      DO 5 I=4.30
                                                                            03390
      IF(SFLAG(I).GT.0) LA(I)=DLOG10(M(I))+LG(I)
                                                                            03400
    5 CONTINUE
                                                                            03410
C
                                                                            03420
CC
              RECALCULATE MOLALITIES OF MASTER SPECIES TO OBTAIN
                                                                            03430
              MASS BALANCE. UPDATE CATIONS THEN ANIONS.
                                                                            03440
C
                                                                            03450
      DO 80 IZ=1,2
                                                                            03460
      DO 10 I=1, MAXT
                                                                            03470
      DM2(I)=0D0
                                                                            03480
   10 CONTINUE
                                                                            03490
C
               CALCULATE MOLALITIES WITH NEW GAMMAS, NEW ACTIVITIES.
                                                                            03500
      DO 40 I=1.LASTS
                                                                            03510
      IF (SFLAG(I).EQ.O) GO TO 40
                                                                            03520
      K=NSP(I)
                                                                            03530
      DM=LKSP(I)-LG(I)
                                                                            03540
      DO 20 J=1,K
                                                                            03550
      DM=DM+LA(LSP(I,J))*CSP(I,J)
                                                                            03560
   20 CONTINUE
                                                                            03570
      IF (I.NE.31) THEN
                                                                            03580
         LM(I)=DM
                                                                            03590
         M(I)=UNDER(DM)
                                                                            03600
      END IF
                                                                            03610
      IF (DABS(M(I)).LE.1.0D-40) GO TO 40
                                                                            03620
C
              SUM MOLALITIES FOR EACH ELEMENT
                                                                            03630
      DO 30 I1=1.K
                                                                            03640
      DM=M(I)*CSP(I,I1)
                                                                            03650
      K2=LSP(I,I1)
                                                                            03660
      IF (K2.LT.4) GO TO 30
                                                                            03670
      AR(K2,K2) = AR(K2,K2) + DM
                                                                            03680
   30 CONTINUE
                                                                            03690
   40 CONTINUE
                                                                            03700
C
              CALCULATE NEW MOLALITIES OF MASTER SPECIES
                                                                            03710
      DO 70 K=4,LASTT
                                                                            03720
      IF (IIN(K).EQ.O) GO TO 70
                                                                            03730
      IF (IESPEC.EQ.K) GO TO 60
                                                                            03740
      IF (IASPEC.EQ.K) GO TO 60
                                                                            03750
      IF (ZSP(K).LE.O.O.AND.IZ.EQ.1) GO TO 60
                                                                            03760
      IF (ZSP(K).GT.O.O.AND.IZ.EQ.2) GO TO 60
                                                                            03770
      IF (AR(K,K).LE.ODO) AR(K,K)=1D-35
                                                                            03780
      LM(K)=LM(K)+(DLOG10(TOT(K))-DLOG10(AR(K,K)))
                                                                            03790
      LA(K)=LM(K)+LG(K)
                                                                            03800
   60 CONTINUE
                                                                            03810
      AR(K,K) = ODO
                                                                            03820
   70 CONTINUE
                                                                            03830
   80 CONTINUE
                                                                            03840
      ZSP(2)=0.0D0
                                                                            03850
C
                                                                            03860
C
           SET UP ARRAYS FOR SUBROUTINE SOLVE
                                                                            03870
C
                                                                            03880
      DO 120 I=1, LASTS
                                                                            03890
      IF (SFLAG(I).EQ.0) GO TO 120
                                                                            03900
```

```
IF (I.EQ.2.OR.I.EQ.3) GO TO 120
                                                                             03910
      K=NSP(I)
                                                                             03920
      DM=LKSP(I)-LG(I)
                                                                             03930
C
           CALCULATE MOLALITY
                                                                             03940
      DO 90 J=1.K
                                                                             03950
      DM=DM+LA(LSP(I,J))*CSP(I,J)
                                                                             03960
   90 CONTINUE
                                                                             03970
      IF (I.NE.31) THEN
                                                                             03980
                                                                             03990
         LM(I)=DM
         M(I)=UNDER(DM)
                                                                             04000
                                                                             04010
      IF (DABS(M(I)).LE.1.0D-40) GO TO 120
                                                                             04020
C
               CALCULATE EFFECT OF IONIC STRENGTH ON GAMMA
                                                                             04030
      DGI = ODO
                                                                             04040
      IF(DABS(DMU).GT.1D-11)
                                                                             04050
         DGI=(GAMMA(I)-OLDG(I))/DMU/GAMMA(I)*M(I)
                                                                             04060
      DELGAM(I) = (GAMMA(I) - OLDG(I))/DMU
                                                                             04070
C
               ELECT, THOR, ALK, MU, AND H2O EQNS.
                                                                             04080
      AR(1,30)=AR(1,30)-DGI*ZSP(I)
                                                                             04090
      AR(2,30) = AR(2,30) - DGI * THSP(I)
                                                                             04100
      AR(3,30)=AR(3,30)-DGI*ALKSP(I)
                                                                             04110
      AR(30,30) = AR(30,30) - DGI*0.5D0*ZSP(I)*ZSP(I)
                                                                             04120
      AR(50,30) = AR(50,30) - DGI*DAW
                                                                             04130
C
              MORE TERMS FOR MATRIX
                                                                             04140
                                                                             04150
      DO 110 I1=1.K
      DM=M(I)*CSP(I.I1)
                                                                             04160
      K2=LSP(I,I1)
                                                                             04170
      DG=ODO
                                                                             04180
      IF(DABS(DMU).GT.1D-11)
                                                                             04190
         DG=(GAMMA(K2)-OLDG(K2))/DMU/GAMMA(K2)*DM
                                                                             04200
C
               EFFECT ON MOLALITY FROM CHANGE IN IONIC STRENGTH
                                                                             04210
      IF(K2.GT.3) AR(K2,30)=AR(K2,30)-DGI*CSP(I.I1)
                                                                             04220
C
                    MASS BALANCE
                                                                             04230
      DO 100 J1=1,K
                                                                             04240
      K1=LSP(I,J1)
                                                                             04250
      IF (K1.LT.4) GO TO 100
                                                                             04260
      AR(K1,K2)=AR(K1,K2)+DM*CSP(I,J1)
                                                                             04270
      AR(K1,30)=AR(K1,30)+DG*CSP(I,J1)
                                                                             04280
  100 CONTINUE
                                                                             04290
C
                    IONIC STRENGTH
                                                                             04300
      AR(30,K2)=AR(30,K2)+DM*0.5D0*ZSP(I)*ZSP(I)
                                                                             04310
      AR(30,30)=AR(30,30)+DG*0.5D0*ZSP(I)*ZSP(I)
                                                                             04320
C
                                                                             04330
                    ELECTRICAL BALANCE
      AR(1,K2)=AR(1,K2)+DM*ZSP(I)
                                                                             04340
      AR(1,30)=AR(1,30)+DG*ZSP(I)
                                                                             04350
C
                                                                             04360
                    THOR BALANCE
      AR(2,K2)=AR(2,K2)+DM*THSP(I)
                                                                             04370
      AR(2,30)=AR(2,30)+DG*THSP(I)
                                                                             04380
C
                                                                             04390
                    ALKALINITY EQUATION
      AR(3,K2)=AR(3,K2)+DM*ALKSP(I)
                                                                             04400
      AR(3,30)=AR(3,30)+DG*ALKSP(I)
                                                                             04410
C
                    H20 DERIVATIVE
                                                                             04420
      AR(50, K2) = AR(50, K2) + DM*DAW
                                                                             04430
                                                                             04440
      AR(50.30) = AR(50.30) + DG*DAW
  110 CONTINUE
                                                                             04450
      THSOLN=THSOLN+M(I)*THSP(I)
                                                                             04460
```

```
04470
      ELECT=ELECT+M(I)*ZSP(I)
                                                                             04480
      DALKS=DALKS+M(I)*ALKSP(I)
                                                                             04490
  120 CONTINUE
                                                                             04500
      ZSP(2) = -1.0
C
                                                                             04510
C
                                                                              04520
                    H2O EQUATION
C
                                                                              04530
                                                                              04540
      AR(50.3) = AR(50.3) - 1.0D0
      AR(30,30) = AR(30,30) - 1.0D0
                                                                             04550
C
      ****
                                                                             04560
      ENTRY SI
                                                                              04570
C
      ****
                                                                              04580
                                                                              04590
      IF (NMINS.NE.O) THEN
         DO 140 I=1,NMINS
                                                                              04600
                                                                              04610
         J=MAXT+I
         K=NMIN(I)
                                                                              04620
C
            CALCULATE INVERSE SATURATION INDEX
                                                                              04630
                                                                              04640
         DSI=LKMIN(I)
         DO 130 I1=1.K
                                                                              04650
         K1=LMIN(I,I1)
                                                                              04660
         IF(DABS(DMU).GT.1D-11) THEN
                                                                              04670
             AR(J,30)=AR(J,30)+(GAMMA(K1)-OLDG(K1))/DMU/GAMMA(K1)
                                                                              04680
     1
             *CMIN(I.I1)
                                                                              04690
             DG=(GAMMA(K1)-OLDG(K1))/DMU/GAMMA(K1)*CMIN(I,I1)
                                                                              04700
                                                                              04710
         END IF
                                                                              04720
         DSI=DSI-LA(LMIN(I,I1))*CMIN(I,I1)
  130
                                                                              04730
         CONTINUE
         CR(J)=DSI*DLOG(1D1)
                                                                              04740
  140
         CONTINUE
                                                                              04750
      END IF
                                                                              04760
      IF(IOPT(8).GT.O) THEN
                                                                              04770
         WRITE(6, 107)
                                                                              04780
  107
         FORMAT(/' I
                         SPECIES DEL MU
                                                GAMMA
                                                                              04790
             OLD GAMMA ',' MOLALITY ')
                                                                              04800
         DO 105 I=1, LASTS
                                                                              04810
         IF (SFLAG(I).EQ.0) GO TO 105
                                                                              04820
         D=(GAMMA(I)-OLDG(I))/DMU/GAMMA(I)
                                                                              04830
         DM=D*M(I)
                                                                              04840
         WRITE(6,106) I, SNAME(I), DMU, GAMMA(I), OLDG(I), M(I)
                                                                              04850
  106
         FORMAT(I4, 1X, A8, 1PD10.3, 1P2D13.4, 3D10.3)
                                                                              04860
  105
                                                                              04870
         CONTINUE
      END IF
                                                                              04880
      RETURN
                                                                              04890
C
                                                                              04900
                                                                              04910
                                                                              04920
      SUBROUTINE CHECK(ISTAT)
$INSERT COMMON.BLOCKS
                                                                              04930
      DIMENSION OLDG(250), GAMMA(250), DELGAM(250)
                                                                              04940
      COMMON /GBLOCK/ OLDG, OLDMU, OLDAW, GAMMA, DELGAM
                                                                              04950
      DOUBLE PRECISION MCLOSE
                                                                              04960
      SAVE OLDMU1
                                                                              04970
      DATA ECLOSE, TCLOSE, THCLOS, MCLOSE /5D-9, 1D-7, 1D-7, 1D-5/
                                                                              04980
      DATA CHKMU /1D-3/
                                                                              04990
      ICHECK=0
                                                                              05000
      JCHECK=0
                                                                              05010
C
                                                                              05020
```

```
C
              CALCULATE RESIDUAL ERROR
                                                                            05030
C
                                                                            05040
      CR(1)=DZOFF-ELECT
                                                                            05050
      CR(2)=THOR-THSOLN
                                                                            05060
      CR(3)=DALKT-DALKS
                                                                            05070
C
           CALCULATE MASS BALANCE
                                                                            05080
      THTOT=DABS(THOR)
                                                                            05090
      DO 10 I=4.LASTT
                                                                            05100
      IF (IIN(I).LE.O) GO TO 10
                                                                            05110
                                                                            05120
      CR(I)=TOT(I)-AR(I,I)
      THTOT=DABS(THSP(I))*TOT(I)+THTOT
                                                                            05130
   10 CONTINUE
                                                                            05140
C
                                                                             05150
C
                                                                             05160
              CHECK IONIC STRENGTH
C
                                                                            05170
      IF(ITER1.GT.1) THEN
                                                                             05180
         IF(DABS(MU-OLDMU1).GT.CHKMU) THEN
                                                                             05190
                                                                             05200
            IF(IOPT(8).EQ.1) WRITE(6,18) DABS(MU-OLDMU1), CHKMU
                                                                             05210
   18
            FORMAT(' FAILED IONIC STRENGTH CHECK. MU-ERROR ', 1PD11.3,
                                                                            05220
             ' TOLER ', 1PD11.3)
                                                                             05230
                                                                             05240
         END IF
                                                                             05250
      END IF
      OLDMU1=MU
                                                                             05260
C
                                                                             05270
Č
              CHECK ELECTRICAL BALANCE
                                                                             05280
C
                                                                             05290
      DCHECK=1D1**(DABS(PH-7DO))*ECLOSE
                                                                             05300
      DCHECK=DMIN1(DCHECK, 1D-5)
                                                                             05310
      IF (IESPEC.GT.O.AND.DABS(CR(1)).GT.DCHECK) THEN
                                                                             05320
                                                                             05330
         ICHECK=1
         IF (IOPT(8).EQ.1) THEN
                                                                             05340
            WRITE (6.12) IESPEC, CR(1), DCHECK
                                                                             05350
            FORMAT(1X, 'FAILED ELECTRICAL BALANCE. '
   12
                                                                             05360
             ' E-SPECIES', I3, ' E-ERROR', 1PD11.3, ' TOLER', D11.3)
                                                                             05370
                                                                             05380
         END IF
      END IF
                                                                             05390
C
                                                                             05400
Č
               CHECK THOR BALANCE
                                                                             05410
C
                                                                             05420
      IF (IIN(2).GT.O.AND.DABS(CR(2)).GT.THCLOS*THTOT) THEN
                                                                             05430
                                                                             05440
         ICHECK=1
                                                                             05450
         IF (IOPT(8).EQ.1) THEN
             WRITE (6,13) CR(2), THCLOS*THTOT
                                                                             05460
             FORMAT(1X, 'FAILED THOR BALANCE. '
                                                                             05470
   13
             ' THOR ERROR', 1PD11.3, ' THOR TOLERANCE', D11.3)
                                                                             05480
                                                                             05490
         END IF
      END IF
                                                                             05500
C
                                                                             05510
C
                                                                             05520
               CHECK ALKALINITY
C
                                                                             05530
      IF (IASPEC.GT.O) THEN
                                                                             05540
         IF(DABS(CR(3)).GT.TCLOSE*DALKT) THEN
                                                                             05550
             ICHECK=1
                                                                             05560
                                                                             05570
             IF (IOPT(8).EQ.1) THEN
                                                                             05580
                WRITE (6,14) IASPEC, CR(3), TCLOSE*DALKT
```

```
14
               FORMAT(1X, 'FAILED ALKALINITY BALANCE. '
                                                                            05590
               ' A-SPECIES', 13, ' A-ERROR', 1PD11.3, ' TOLER', D11.3)
     1
                                                                            05600
            END IF
                                                                            05610
         END IF
                                                                            05620
      END IF
                                                                            05630
C
                                                                            05640
C
           CHECK MASS BALANCES
                                                                            05650
C
                                                                            05660
      DO 20 I=4.LASTT
                                                                            05670
      IF (IIN(I).GT.O.AND.I.NE.IESPEC.AND.I.NE.IASPEC) THEN
                                                                            05680
         IF (DABS(CR(I)).GT.TCLOSE*TOT(I)) THEN
                                                                            05690
            ICHECK=1
                                                                            05700
            IF(IOPT(8).EQ.1) WRITE (6,25) I
                                                                            05710
   25
            FORMAT(' FAILED MASS BALANCE. SPECIES', 14)
                                                                            05720
            IF(DABS(CR(I)).GT.1D-4*TOT(I)) THEN
                                                                            05730
                JCHECK=1
                                                                            05740
               IF(IOPT(8).EQ.1) WRITE(6,16)
                                                                            05750
               FORMAT(' MASS-BALANCE-ONLY FLAG SET.')
   16
                                                                            05760
                                                                            05770
            END IF
         END IF
                                                                            05780
      END IF
                                                                            05790
   20 CONTINUE
                                                                            05800
C
                                                                            05810
C
                                                                            05820
           CHECK MINERAL EQUILIBRIA
C
                                                                            05830
      IF (NMINS.GT.O) THEN
                                                                            05840
         DO 30 I=1, NMINS
                                                                            05850
         K=MAXT+I
                                                                            05860
         IF (DABS(CR(K)).GT.MCLOSE) THEN
                                                                            05870
            ICHECK=1
                                                                            05880
            IF (IOPT(8).GT.O) THEN
                                                                            05890
               WRITE(6,35) MNAME(I), CR(K), MCLOSE
                                                                            05900
               FORMAT(' FAILED SATURATION TEST. ', A12,' SI-ERROR ',
   35
                                                                            05910
                1PD11.3, 'SI-TOLER ', 1PD10.2)
                                                                            05920
            END IF
                                                                            05930
         END IF
                                                                            05940
         CONTINUE
   30
                                                                            05950
      END IF
                                                                            05960
C
                                                                            05970
C
              STOP ON MAX ITERATIONS
                                                                            05980
C
                                                                            05990
      IF (ITER.GT.100.OR.ITER1.GT.50) THEN
                                                                            06000
         WRITE (6,70) ITER, ITER1
                                                                            06010
   70
         FORMAT(1H1,80('*')//' CALCULATIONS TERMINATED ',/,
                                                                            06020
         ' ITER ',15,' ITER1 ',15)
     1
                                                                            06030
         F=0.0D0
                                                                            06040
         CALL PBUG(F,F)
                                                                            06050
         CALL PTOT
                                                                            06060
         CALL PSPEC
                                                                            06070
         CALL PPHASE
                                                                            06080
         CALL PLOOK
                                                                            06090
         ENDFILE (UNIT=6)
                                                                            06100
         STOP 'SUBROUTINE CHECK, MAXIMUM ITERATIONS'
                                                                            06110
      END IF
                                                                            06120
C
                                                                            06130
C
              SET ISTAT TO BRANCH ON CONVERGENCE CRITERIA
                                                                            06140
```

```
06150
C
                                                                             06160
      DO 50 I=1,NEQ+1
                                                                             06170
      DELTA(I)=ODO
   50 CONTINUE
                                                                             06180
      IF (JCHECK.GT.O.OR.ITER1.LE.1) THEN
                                                                             06190
C
              POOR MASS BALANCE, BACK TO AQMOD
                                                                             06200
                                                                             06210
         ISTAT=2
                                                                             06220
         RETURN
      ELSE IF (ICHECK.GT.O.OR.ITER.LT.5) THEN
                                                                             06230
C
              GOOD MASS BALANCE, GO TO SOLVE
                                                                             06240
                                                                             06250
         DO 107 I=1.LASTS
                                                                             06260
         OLDG(I)=GAMMA(I)
                                                                             06270
  107
         CONTINUE
         OLDMU=MU
                                                                             06280
                                                                             06290
         OLDAW=TOT(3)
                                                                             06300
         ISTAT=1
                                                                             06310
         RETURN
      ELSE IF (ICHECK.EQ.O.AND.JCHECK.EQ.O.AND.ITER.GT.4) THEN
                                                                             06320
C
               CONVERGED
                                                                             06330
                                                                             06340
         ISTAT=0
         RETURN
                                                                             06350
                                                                             06360
      ELSE
         WRITE(6,80) ICHECK, JCHECK, ITER, ITER1
                                                                             06370
   80 FORMAT(' UNKNOWN STATUS IN SUBROUTINE CHECK.'/
                                                                             06380
         ' ICHECK = ',14,/
                                                                             06390
     1
        ' JCHECK = ',14,/
' ITER = ',14,/
' ITER1 = ',14)
                                                                             06400
     1
                                                                             06410
                                                                             06420
                                                                             06430
      END IF
      STOP 'SUBROUTINE CHECK, UNKNOWN STATUS'
                                                                             06440
                                                                             06450
C
                                                                             06460
      END
      SUBROUTINE SOLVE
                                                                             06470
$INSERT COMMON.BLOCKS
                                                                             06480
                                                                             06490
      DIMENSION OLDG(250), GAMMA(250), DELGAM(250)
      COMMON /GBLOCK/ OLDG,OLDMU,OLDAW,GAMMA,DELGAM
                                                                             06500
                                                                             06510
      COMMON / FLAGMU / INMU
C
                                                                             06520
C
            COPY ROWS OF AR INTO MATRIX AS WHICH IS INVERTED IN SLNQ
                                                                             06530
C
                                                                             06540
                                                                             06550
      IF (NEQ.EQ.O) RETURN
C
                                                                             06560
            SWITCH OUT DELTA MU CALCULATIONS FOR MASTER SPECIES
                                                                             06570
C
C
                                                                             06580
      INMU=0
                                                                             06590
      DMU=DABS(MU-OLDMU)
                                                                             06600
C
               NO MU EQN IF ELECT > 1 OR DEL MU > 1 OR SI > 0.5
                                                                             06610
                                                                             06620
      IF(DABS(CR(1)).GT.1DO.AND.IIN(1).GT.0) INMU=1
      IF(DMU.GT.O.1DO.AND.IIN(1).GT.O) INMU=1
                                                                             06630
      IF(NMINS.GT.O) THEN
                                                                             06640
                                                                             06650
         DO 6 I=1, NMINS
                                                                             06660
         J=MAXT+I
          IF(DABS(CR(J)).GT.5D0) INMU=1
                                                                             06670
                                                                             06680
         CONTINUE
      END IF
                                                                             06690
                                                                             06700
      IF (INMU.GT.O) THEN
```

```
AR(1,30) = 0D0
                                                                             06710
         AR(3,30) = ODO
                                                                             06720
         DO 5 I=4.49
                                                                             06730
         IF(I.NE.30) AR(I,30)=ODO
                                                                             06740
    5
         CONTINUE
                                                                             06750
         AR(30.30) = -1.0D0
                                                                             06760
      END IF
                                                                             06770
C
                                                                             06780
C
           PUT ELECTRICAL BALANCE EQUATION IN PLACE OF A MASS BALANCE
                                                                             06790
C
                                                                              06800
                                                                             06810
      LASTTX=LASTT
                                                                              06820
      LASTT=30
                                                                              06830
      IIN(30)=ILT+1
                                                                              06840
      IF (IESPEC.LT.2) GO TO 30
      TOT(IESPEC) = AR(IESPEC, IESPEC)
                                                                              06850
                                                                              06860
      DO 10 I=1,LASTT
                                                                              06870
      IF (IIN(I).EQ.0) GO TO 10
      AR(IESPEC,I)=AR(1,I)
                                                                              06880
                                                                              06890
   10 CONTINUE
      CR(IESPEC) = - ELECT
                                                                              06900
   30 CONTINUE
                                                                              06910
C
                                                                             06920
С
           PUT ALKALINITY EQUATION IN PLACE OF MASS BALANCE
                                                                              06930
C
                                                                              06940
      IF (IASPEC.EQ.0) GO TO 50
                                                                              06950
                                                                              06960
      TOT(IASPEC) = AR(IASPEC, IASPEC)
                                                                              06970
      DO 40 I=1,LASTT
      AR(IASPEC,I)=AR(3,I)
                                                                              06980
   40 CONTINUE
                                                                              06990
      CR(IASPEC)=CR(3)
                                                                              07000
   50 CONTINUE
                                                                              07010
C
                                                                              07020
C
           FIX AH20 EQUATION.
                                                                              07030
C
                                                                              07040
      IF(IIN(3).GT.O) THEN
                                                                              07050
         DO 65 I=1,50
                                                                              07060
         AR(3,I)=AR(50,I)
                                                                              07070
   65
         CONTINUE
                                                                              07080
         CR(3) = ODO
                                                                              07090
      END IF
                                                                              07100
C
                                                                              07110
C
           COPY EQUATIONS INTO ARRAY AS.
                                                                              07120
C
                                                                              07130
      DO 80 I=1.LASTT
                                                                              07140
      IF (IIN(I).EQ.0) GO TO 80
                                                                              07150
      K1=IIN(I)
                                                                              07160
      DO 60 J=1, LASTT
                                                                              07170
      K2=IIN(J)
                                                                              07180
      IF (K2.EQ.0) GO TO 60
                                                                              07190
      AS(K1,K2)=AR(I,J)
                                                                              07200
   60 CONTINUE
                                                                              07210
      AS(K1,NEQ1+1)=CR(I)
                                                                              07220
      IF(NMINS.EQ.O) GO TO 80
                                                                              07230
      DO 70 J=1, NMINS
                                                                              07240
      AS(K1,ILT+1+J)=AR(I,MAXT+J)
                                                                              07250
   70 CONTINUE
                                                                              07260
```

```
80 CONTINUE
                                                                               07270
C
                                                                               07280
C
            COPY MINERAL EQUATIONS
                                                                               07290
C
                                                                               07300
      IF (NMINS.EQ.O) GO TO 120
                                                                               07310
      DO 110 I=1, NMINS
                                                                               07320
                                                                               07330
      K=MAXT+I
                                                                               07340
      L=ILT+I+1
      DO 90 J=1, LASTT
                                                                               07350
                                                                               07360
      IF (IIN(J).LE.O) GO TO 90
      AS(L,IIN(J))=AR(K,J)
                                                                               07370
   90 CONTINUE
                                                                               07380
                                                                               07390
      DO 100 J=1, NMINS
      AS(L.ILT+J+1)=AR(K.MAXT+J)
                                                                               07400
  100 CONTINUE
                                                                               07410
      AS(L,NEQ!+1)=CR(K)
                                                                               07420
                                                                               07430
  110 CONTINUE
  120 CONTINUE
                                                                               07440
C
                                                                               07450
C
            INVERT MATRIX. (DX/X VALUES IN DELTA)
                                                                               07460
C
                                                                               07470
                                                                               07480
      CALL SLNQ
      LASTT=LASTTX
                                                                               07490
                                                                               07500
      IIN(30)=0
      RETURN
                                                                               07510
      END
                                                                               07520
                                                                               07530
      SUBROUTINE SLNQ
      IMPLICIT DOUBLE PRECISION(A-H,O-Z), INTEGER(I-N)
                                                                               07540
      CHARACTER *12 SNAME, TNAME, MNAME
                                                                               07550
      DOUBLE PRECISION LM, LA, LG, LKSP, LKMIN, MU
                                                                               07560
      COMMON /REAL8/ LM(250), E(250), LA(250), LG(250), LKSP(250),
                                                                               07570
                           DELTA(50), DELTOT(50), AR(50,50),
                                                                               07580
     1
              TOT(50).
     2
              AS(50,50), CR(50), CS(50), LKMIN(20),
                                                                               07590
     3
              THOR, ELECT, THSOLN, PH, PE, G, H, MU, TOTAL (2, 30),
                                                                               07600
              DALKT, DALKS, DIFFZ(2), DZOFF
                                                                               07610
      INTEGER GFLAG, SFLAG
                                                                               07620
      COMMON /INT2/ NSP(250), LSP(250,6), KFLAG(250), GFLAG(250),
                                                                               07630
              SFLAG(250), LASTT, LASTS, IIN(50), IOUT(50), IFE, ILE,
                                                                               07640
     1
              IFTH, ILTH, IFT, ILT, IFM, ILM, NEQ, NEQ1, IESPEC, ISOLV(2),
     2
                                                                               07650
              NMIN(20), LMIN(20, 10), MFLAG(20), LMCON(20,5), NMCON(20).
     3
                                                                               07660
     4
              LMINO(20, 10), NMINO(20), IOPT(10), NMINS, NSTEPS, NCOMPS,
                                                                               07670
     5
              NELTS, NSPECS, ISTEP, LREAC(30), MAXT, MAXT1, MAXM, MAXEQ,
                                                                               07680
              MAXS, NRMINS, ITER, ISOL, IASPEC, IALK(2), IUNITS(2)
                                                                               07690
C
                                                                               07700
C
      SOLUTION OF N LINEAR EQUATIONS IN N UNKNOWNS BY GAUSSIAN
                                                                               07710
C
      ELIMINATION OR DETERMINANT EVALUTAION.
                                                                               07720
C
      A CONTAINS THE MATRIX OF THE COEFFICIENTS AND N INDICATES THE
                                                                               07730
C
      ORDER OF THE MATRIX. IF J EQUALS ZERO, D CONTAINS THE VALUE OF THE 07740
C
      DETERMINANT. IF J DOES NOT EQUAL ZERO, X CONTAINS THE N VALUES OF
                                                                               07750
C
      THE UNKNOWNS.
                                                                               07760
C
                                                                               07770
      J=1
                                                                               07780
      N=NEO+1
                                                                               07790
      D=0.0D0
                                                                               07800
                                                                               07810
      NP1=N+1
                                                                               07820
      NM1=N-1
```

```
07830
    IF (IOPT(9).NE.1) GO TO 20
                                                                           07840
    DO 10 II=1,N
                                                                           07850
    WRITE (6,240) (AS(II,JJ),JJ=1,NP1)
                                                                           07860
10 CONTINUE
                                                                           07870
20 CONTINUE
                                                                           07880
    IF (N.EQ.1) GO TO 210
    DO 120 I=1,NM1
                                                                           07890
    M=I
                                                                           07900
    K=I+1
                                                                           07910
                                                                           07920
    B=AS(I,I)
                                                                           07930
    DO 40 L=K,N
                                                                           07940
    IF (DABS(B)-DABS(AS(L,I))) 30,40,40
30 M=L
                                                                           07950
                                                                           07960
    B=AS(L.I)
                                                                           07970
40 CONTINUE
                                                                           07980
    IF (B) 50,160,50
                                                                           07990
50 CC=AS(M,I)
    IF (I-M) 60.80.60
                                                                           08000
60 D = -D
                                                                           08010
    IF (DABS(CC).LE.1.0D-40) GO TO 300
                                                                           08020
                                                                           08030
    DO 70 L=I.NP1
    B=AS(I,L)
                                                                           08040
    AS(I,L)=AS(M,L)/CC
                                                                           08050
                                                                           08060
 70 \text{ AS}(M,L)=B
                                                                           08070
    GO TO 100
80 CONTINUE
                                                                           08080
                                                                           08090
    IF (DABS(CC).LE.1.0D-40) GO TO 300
    DO 90 L=I,NP1
                                                                           08100
                                                                           08110
90 AS(I,L)=AS(I,L)/CC
                                                                           08120
100 D=D*CC
                                                                           08130
    DO 110 M=K,N
                                                                           08140
    B=AS(M,I)
    DO 110 L=I,NP1
                                                                           08150
110 AS(M,L)=AS(M,L)-B*AS(I,L)
                                                                           08160
                                                                           08170
120 CONTINUE
    D=D*AS(N,N)
                                                                           08180
    IF (J) 130,200,130
                                                                           08190
                                                                           08200
130 CONTINUE
    IF(DABS(AS(N,N)).GE.1.OD-40) GO TO 135
                                                                           08210
                                                                           08220
    WRITE (6,320)N
320 FORMAT(1X, 'AS(N, N) = 0D0. N = 1, I3)
                                                                           08230
                                                                            08240
    DELTA(N)=ODO
                                                                            08250
    GO TO 145
                                                                           08260
135 DELTA(N)=AS(N,NP1)/AS(N,N)
                                                                            08270
145 CONTINUE
                                                                            08280
    K=NM1
140 M=K+1
                                                                           08290
    B=0.0D0
                                                                            08300
                                                                            08310
    DO 150 L=M.N
150 B=B+AS(K,L)*DELTA(L)
                                                                            08320
                                                                            08330
    DELTA(K)=AS(K,NP1)-B
    K=K-1
                                                                            08340
    IF (K) 160,180,140
                                                                            08350
160 IF (J) 170,180,170
                                                                            08360
170 WRITE (6,260)
                                                                            08370
                                                                           08380
    ENDFILE (UNIT=6)
```

```
08390
      STOP 'SINGULAR MATRIX IN SUBROUTINE SLNQ'
  180 D=0.0D0
                                                                             08400
                                                                             08410
      IF (IOPT(9).LT.1) GO TO 190
                                                                             08420
      WRITE (6.220)
      WRITE (6,230) (DELTA(I), I=1,N)
                                                                             08430
                                                                             08440
      WRITE (6,250)
                                                                             08450
  190 CONTINUE
 200 RETURN
                                                                             08460
                                                                             08470
 210 CONTINUE
      IF (DABS(AS(1,1)).LE.1.OD-40) GO TO 170
                                                                             08480
      DELTA(1)=AS(1,2)/AS(1,1)
                                                                             08490
      GO TO 180
                                                                             08500
                                                                             08510
  300 CONTINUE
      WRITE (6,310)I,L,M,ITER
                                                                             08520
 310 FORMAT(1X, 'CC=0', ' I=', I3, ' L=', I3, ' M=', I3, ' ITER=', I3)
                                                                             08530
      ENDFILE (UNIT=6)
                                                                             08540
                                                                             08550
      STOP
C
                                                                             08560
C
                                                                             08570
                                                                             08580
  220 FORMAT (1X, 'DELTA VALUES')
                                                                             08590
  230 FORMAT (3X, 1P6D12.3)
                                                                             08600
  240 FORMAT (/(3X.1P6D12.3))
                                                                             08610
  250 FORMAT (1X)
                                                                             08620
                                                                             08630
  260 FORMAT (1H1, 'THE PHASE RULE HAS BEEN VIOLATED')
                                                                             08640
      SUBROUTINE RESET
                                                                             08650
$INSERT COMMON.BLOCKS
                                                                             08660
      DIMENSION OLDG(250), GAMMA(250), DELGAM(250)
                                                                             08670
                                                                             08680
      COMMON /GBLOCK/ OLDG, OLDMU, OLDAW, GAMMA, DELGAM
      COMMON / FLAGMU / INMU
                                                                             08690
C
               INITIALIZE
                                                                             08700
                                                                             08710
      DMIN=0.6D0
      DMAX=3.0D0
                                                                             08720
      F = 1D0
                                                                             08730
      DPHPE=1D0
                                                                             08740
      DO 20 I=1, LASTT
                                                                             08750
      DELTOT(I)=0.0D0
                                                                             08760
   20 CONTINUE
                                                                             08770
C
                                                                             08780
C
           CALCULATE DELTA TOTALS IN MASSES
                                                                             08790
C
                                                                             08800
                                                                             08810
      DELMU=DELTA(ILT+1)
      IF (NMINS.GT.O) THEN
                                                                             08820
         DO 25 I=IFM, ILM
                                                                             08830
         DELTA(I)=DELTA(I+1)
                                                                             08840
   25
         CONTINUE
                                                                             08850
                                                                             08860
         DO 40 I=IFT.ILT
         DT=0.0D0
                                                                             08870
         DO 30 J=IFM, ILM
                                                                             08880
                                                                             08890
         K=MAXT+J-ILT
         DT=DT-DELTA(J)*AR(IOUT(I),K)
                                                                             08900
   30
         CONTINUE
                                                                             08910
                                                                             08920
         DELTOT(I)=DT
   40
         CONTINUE
                                                                             08930
C
               MAKE SURE DELTA MINERALS IS SMALL
                                                                             08940
```

```
08950
         DO 510 I=IFM.ILM
                                                                            08960
         IF (DELTA(I).GT.O.5DO) THEN
C
                   MAXIMUM INCREASE
                                                                            08970
                                                                            08980
            DF=0.5D0/DELTA(I)
            F=DMIN1(DF.F)
                                                                            08990
         ELSE IF (DELTA(I).LT.-0.7DO) THEN
                                                                            09000
C
                   MAXIMUM DECREASE
                                                                            09010
                                                                            09020
            DF=0.7DO/DABS(DELTA(I))
            F=DMIN1(DF.F)
                                                                            09030
         END IF
                                                                            09040
  510
         CONTINUE
                                                                            09050
         DO 50 I=IFT,ILT
                                                                            09060
C
                   MAXIMUM INCREASE IN ELEMENT CONCENTRATION
                                                                            09070
                                                                            09080
         IF (DABS(DELTOT(I)).GT.5.0DO) THEN
            DF=5.0D0/DABS(DELTOT(I))
                                                                            09090
            F=DMIN1(F.DF)
                                                                            09100
         END IF
                                                                            09110
C
                   MAKE SURE NO NEGATIVE CONCENTRATIONS RESULT
                                                                            09120
         IF (TOT(IOUT(I))+DELTOT(I).LE.O.ODO) THEN
                                                                            09130
                                                                            09140
            DF=-0.9DO*TOT(IOUT(I))/DELTOT(I)
            F=DMIN1(F,DF)
                                                                            09150
         END IF
                                                                            09160
   50
         CONTINUE
                                                                            09170
      END IF
                                                                            09180
C
                                                                            09190
С
              ENSURE DECREASE OR INCREASE IN ACTIVITY IS NOT TOO LARGE
                                                                            09200
C
                                                                            09210
                                                                            09220
      DO 55 I=IFT,ILT
      IF (DELTA(I).LT.-0.9DO) THEN
                                                                            09230
         DF=-0.9DO/DELTA(I)
                                                                            09240
         F=DMIN1(F,DF)
                                                                            09250
      END IF
                                                                            09260
      IF (DELTA(I).GT.3.0DO) THEN
                                                                            09270
         DF=3.0D0/DELTA(I)
                                                                            09280
         F=DMIN1(F,DF)
                                                                            09290
      END IF
                                                                            09300
   55 CONTINUE
                                                                            09310
C
                                                                            09320
C
                   ENSURE DELTA IONIC STRENGTH IS SMALL
                                                                            09330
C
                                                                            09340
      DMU=MU+DELMU
                                                                            09350
      IF (INMU.GT.O) DELMU=ODO
                                                                            09360
                                                                            09370
      IF(DELMU.GT.O.5DO) THEN
              MAXIMUM INCREASE ABSOLUTE
C
                                                                            09380
         DF=0.5D0/DELMU
                                                                            09390
         F=DMIN1(F,DF)
                                                                            09400
      ELSE IF (DELMU.LE.-MU*.4DO) THEN
                                                                            09410
C
               MAXIMUM DECREASE BY FRACTION
                                                                            09420
         DF=MU*0.4/DABS(DELMU)
                                                                            09430
         F=DMIN1(F,DF)
                                                                            09440
      END IF
                                                                            09450
      IF (DELMU.LT.-0.4DO) THEN
                                                                            09460
C
               MAXIMUM DECREASE ABSOLUTE
                                                                            09470
         DF=0.4DO/DABS(DELMU)
                                                                            09480
         F=DMIN1(F,DF)
                                                                            09490
      END IF
                                                                            09500
```

```
C
                                                                            09510
C
           ENSURE PH CHANGE REASONABLE
                                                                            09520
C
                                                                            09530
      IF (IIN(1).GT.O) THEN
                                                                            09540
         IF (DELTA(1).LT.-DMIN.OR.DELTA(1).GT.DMAX) THEN
                                                                            09550
            DF=DABS(DMIN/DELTA(1))
                                                                            09560
            IF (DELTA(1).GT.ODO) DF=DMAX/DELTA(1)
                                                                            09570
            DPHPE=DF
                                                                            09580
         END IF
                                                                            09590
      END IF
                                                                            09600
C
                                                                            09610
C
           ENSURE PE CHANGE REASONABLE.
                                                                            09620
C
                                                                            09630
      IF (IFTH.GT.O) THEN
                                                                            09640
         IF (DELTA(IFTH).LT.-DMIN.OR.DELTA(IFTH).GT.DMAX) THEN
                                                                            09650
            DF=DABS(DMIN/DELTA(IFTH))
                                                                            09660
            IF (DELTA(IFTH).GT.ODO) DF=DMAX/DELTA(IFTH)
                                                                            09670
            DPHPE=DMIN1(DF, DPHPE)
                                                                            09680
                                                                            09690
         END IF
      END IF
                                                                            09700
C
                                                                            09710
C
          ENSURE ALKALINITY CHANGE IS REASONABLE.
                                                                            09720
Ċ
                                                                            09730
      IF (IASPEC.GT.O.AND.IOPT(2).NE.1) THEN
                                                                            09740
                                                                            09750
         I=IIN(IASPEC)
         IF (DELTA(I).LT.-DMIN.OR.DELTA(I).GT.DMAX) THEN
                                                                            09760
            DF=DABS(DMIN/DELTA(I))
                                                                            09770
            IF (DELTA(I).GT.ODO)DF=DMAX/DELTA(I)
                                                                            09780
            DPHPE=DMIN1(DF.DPHPE)
                                                                            09790
                                                                            09800
         END IF
                                                                            09810
      END IF
      F=DMIN1(DPHPE,F)
                                                                            09820
      DPHPE=F
                                                                            09830
C
                                                                            09840
C
           SCALE DELTAS
                                                                            09850
C
                                                                            09860
      IF(DABS(1DO-F).GT.1D-8) THEN
                                                                            09870
         DO 95 I=IFT.ILT
                                                                            09880
         DELTA(I) = DELTA(I) #F
                                                                            09890
   95
         CONTINUE
                                                                            09900
         DELMU=DELMU*F
                                                                            09910
      END IF
                                                                            09920
      IF(DABS(1D0-F).GT.1D-8.AND.NMINS.GT.0) THEN
                                                                            09930
         DO 90 I=IFT.ILT
                                                                            09940
         DELTOT(I) = DELTOT(I) *F
                                                                            09950
   90
                                                                            09960
         CONTINUE
         DO 100 I=IFM, ILM
                                                                            09970
         DELTA(I)=DELTA(I)#F
                                                                            09980
  100
         CONTINUE
                                                                            09990
                                                                             10000
      END IF
      IF (IIN(1).GT.O) DELTA(1)=DELTA(1)*DPHPE
                                                                             10010
      IF (IIN(2).GT.O) DELTA(IIN(2))=DELTA(IIN(2))*DPHPE
                                                                             10020
C
                                                                             10030
C
               CALL DEBUG PRINT
                                                                             10040
C
                                                                             10050
      IF (IOPT(8).GT.0) WRITE(6,97) DELMU
                                                                             10060
```

```
97 FORMAT(' CALCULATED DELTA MU, SCALED = ',1PD10.2)
                                                                            10070
      IF (ITER.GT.190.OR.IOPT(8).EQ.1.OR.ITER1.GT.40) CALL PBUG(F,DPHPE) 10080
C
                                                                            10090
C
                                                                            10100
           RESET ELECTRICAL BALANCE SPECIES
C
                                                                            10110
      IF (IESPEC.GT.O) THEN
                                                                            10120
         D=DELTA(IIN(IESPEC))
                                                                            10130
         LM(IESPEC)=LM(IESPEC)+DLOG10(1D0+D)
                                                                            10140
         M(IESPEC) = 1D1##LM(IESPEC)
                                                                            10150
         DGI=GAMMA(IESPEC)+DELGAM(IESPEC)*DELMU
                                                                            10160
         IF (DGI.LE.O) THEN
                                                                            10170
            DGI=LG(IESPEC)
                                                                            10180
         ELSE
                                                                            10190
            DGI=DLOG10(DGI)
                                                                            10200
         END IF
                                                                            10210
         LA(IESPEC)=LM(IESPEC)+DGI
                                                                            10220
         TOT(1) = 1D1**LA(1)
                                                                            10230
         PH=-LA(1)
                                                                            10240
      END IF
                                                                            10250
C
                                                                            10260
C
           RESET ALKALINITY SPECIES
                                                                            10270
C
                                                                            10280
      IF (IASPEC.GT.O) THEN
                                                                            10290
         D=DELTA(IIN(IASPEC))*DPHPE
                                                                            10300
         IF (IOPT(2).NE.1) THEN
                                                                            10310
            LM(IASPEC)=LM(IASPEC)+DLOG10(1D0+D)
                                                                            10320
            M(IASPEC)=1.OD1**LM(IASPEC)
                                                                            10330
            DGI=GAMMA(IASPEC)+DELGAM(IASPEC)*DELMU
                                                                            10340
             IF (DGI.LE.O) THEN
                                                                            10350
                DGI=LG(IASPEC)
                                                                            10360
            ELSE
                                                                            10370
                DGI=DLOG10(DGI)
                                                                            10380
            END IF
                                                                            10390
            LA(IASPEC)=LM(IASPEC)+DGI
                                                                             10400
         END IF
                                                                            10410
      END IF
                                                                            10420
C
                                                                            10430
C
           RESET ACTIVITY OF ELECTRON
                                                                            10440
C
                                                                            10450
                                                                            10460
      IF (IFTH.GT.O) THEN
         TOT(2)=TOT(2)*(1DO+DELTA(IFTH))
                                                                            10470
         LA(2)=DLOG10(TOT(2))
                                                                            10480
         PE=-LA(2)
                                                                            10490
      END IF
                                                                            10500
C
                                                                            10510
C
           ESTIMATE NEW ACTIVITY OF WATER
                                                                            10520
C
                                                                            10530
      IF(DELMU.GT.ODO.AND.IIN(3).GT.O.AND.INMU.LE.O) THEN
                                                                            10540
         DAW=DELTA(IIN(3))*F
                                                                            10550
         IF(DABS(DAW).GT.ODO) THEN
                                                                            10560
            LA(3)=LA(3)+DLOG10(1D0+DAW)
                                                                            10570
         END IF
                                                                            10580
      END IF
                                                                            10590
      M(3) = 1D1**LA(3)
                                                                            10600
                                                                            10610
C
C
           RESET MASTER SPECIES
                                                                            10620
```

```
10630
C
                                                                              10640
      DO 165 I=IFT,ILT
                                                                              10650
      K=IOUT(I)
      IF(K.EQ.IASPEC) GO TO 165
                                                                              10660
                                                                              10670
      IF(K.EQ.IESPEC) GO TO 165
      LM(K)=LM(K)+DLOG10(1DO+DELTA(I))
                                                                              10680
                                                                              10690
      M(K)=UNDER(LM(K))
      DGI = GAMMA(K) + DELGAM(K) * DELMU
                                                                              10700
      IF (DGI.LE.O) THEN
                                                                              10710
                                                                              10720
         DGI=LG(K)
      ELSE
                                                                              10730
                                                                              10740
         DGI=DLOG10(DGI)
                                                                              10750
      END IF
                                                                              10760
      LA(K)=LM(K)+DGI
                                                                              10770
  165 CONTINUE
      DO 122 I=4.LASTS
                                                                              10780
                                                                              10790
      IF (SFLAG(I).EQ.0) GO TO 122
                                                                              10800
      DGI=GAMMA(I)+DELGAM(I)*DELMU
      IF (DGI.LE.O) THEN
                                                                              10810
         DGI=LG(I)
                                                                              10820
      ELSE
                                                                              10830
                                                                              10840
         DGI=DLOG10(DGI)
                                                                              10850
      END IF
                                                                              10860
      DM=LKSP(I)-DGI
                                                                              10870
      K=NSP(I)
                                                                              10880
C
            CALCULATE MOLALITY
                                                                              10890
      DO 92 J=1.K
                                                                              10900
      DM=DM+LA(LSP(I,J))*CSP(I,J)
                                                                              10910
   92 CONTINUE
                                                                              10920
         LM(I)=DM
                                                                              10930
         M(I)=UNDER(DM)
                                                                              10940
  122 CONTINUE
      IF(IOPT(8).GT.O) THEN
                                                                              10950
          WRITE(6, 107)
                                                                              10960
         FORMAT('PRINTED IN RESET AFTER RECALCULATION OF M(I).'.
  107
                                                                              10970
                                     MOLALITY')
                                                                              10980
                 /,'
                         I GAMMA
                                                                              10990
         DO 105 I=1, LASTS
                                                                              11000
          IF (SFLAG(I).EQ.0) GO TO 105
                                                                              11010
          D=1D1**LG(I)
          WRITE(6, 106) I, D, M(I)
                                                                              11020
  106
                                                                              11030
          FORMAT(15, 1P2D10.3)
                                                                              11040
  105
          CONTINUE
      END IF
                                                                              11050
C
            RESET TOTALS
                                                                              11060
       IF (NMINS.EQ.O) GO TO 180
                                                                              11070
                                                                              11080
       DO 160 I=IFT, ILT
                                                                              11090
       K=IOUT(I)
      TOT(K) = TOT(K) + DELTOT(I)
                                                                              11100
       IF (TOT(K).LE.1D-30) TOT(K)=1D-30
                                                                              11110
  160 CONTINUE
                                                                              11120
C
            RESET TOTAL MINERALS ADDED OR REMOVED AND THE THOR.
                                                                              11130
                                                                              11140
       DO 170 I=IFM.ILM
                                                                              11150
       K=MAXT+I-ILT
       TOT(K) = TOT(K) + DELTA(I)
                                                                              11160
       IF(IOPT(3).EQ.6.AND.I.EQ.IFM) THEN
                                                                              11170
          THOR=THOR+DELTA(I)*THREAC
                                                                              11180
```

```
11190
      ELSE
                                                                             11200
         THOR=THOR+THMIN(I-ILT)*DELTA(I)
      END IF
                                                                             11210
  170 CONTINUE
                                                                             11220
  180 CONTINUE
                                                                             11230
                                                                             11240
      RETURN
                                                                             11250
      END
                                                                             11260
      FUNCTION UNDER(D)
      DOUBLE PRECISION D, UNDER
                                                                             11270
                                                                             11280
      UNDER=ODO
      IF (D.LT.-33.0D0) GO TO 10
                                                                             11290
      UNDER=1D2
                                                                             11300
                                                                             11310
      IF (D.GT.2DO) GO TO 10
      UNDER=1D1**D
                                                                             11320
   10 CONTINUE
                                                                             11330
                                                                             11340
      RETURN
                                                                             11350
      END
                                                                             11360
      SUBROUTINE PTOT
$INSERT COMMON.BLOCKS
                                                                             11370
      LOGICAL EVAP
                                                                             11380
                                                                             11390
      COMMON /EVAP/ EVAP
      COMMON / MX10 / VP,DWO
                                                                             11400
      CHARACTER *12 DALK, DN, DN1, DN2, DN3, DNAME
                                                                             11410
      CHARACTER *80 CARD
                                                                             11420
      DIMENSION DAO(250), DM(250), COR(1:34), DGO(40)
                                                                             11430
      LOGICAL LHSP, LNHSP
                                                                             11440
      COMMON / COS / COSMOT
                                                                             11450
      DATA IDATA /O/, DALK/'TOT ALK'/
                                                                             11460
      DATA DN1/'02'/,DN2/'H2'/,DN3/'CHARGE'/
                                                                             11470
      WRITE (6,220)
                                                                             11480
      WRITE (6,230)
                                                                             11490
      KK=0
                                                                             11500
      DO 10 I=4, MAXT
                                                                             11510
      IF (DABS(TOT(I)).LE.1.0D-40) GO TO 10
                                                                             11520
      KK = 1
                                                                             11530
                                                                             11540
      DLT=DLOG10(TOT(I))
      DNAME=TNAME(I)
                                                                             11550
      IF (IASPEC.EQ.I) DNAME=DALK
                                                                             11560
      WRITE (6,240) DNAME, TOT(I), DLT
                                                                             11570
   10 CONTINUE
                                                                             11580
      IF (KK.EQ.0) WRITE (6,250)
                                                                             11590
      WRITE (6,260)
                                                                             11600
      RETURN
                                                                             11610
C
      ****
                                                                             11620
      ENTRY PSPEC
                                                                             11630
C
      ****
                                                                             11640
      WRITE (6,270)
                                                                             11650
      WRITE (6,280) PH.TOT(3).COSMOT, MU.TC, VP. DWO, ELECT, DALKS, ITER
                                                                             11660
      IF (IASPEC.LE.O) GO TO 20
                                                                             11670
      WRITE (6,290) TOTAL(ISOL, IASPEC)
                                                                             11680
   20 CONTINUE
                                                                             11690
      IF (IESPEC.LE.1) GO TO 30
                                                                             11700
      DD=TOT(IESPEC)-DNEUT
                                                                             11710
      WRITE (6,300) TNAME(IESPEC), DD
                                                                             11720
   30 CONTINUE
                                                                             11730
      WRITE (6,310)
                                                                             11740
```

```
IF(IOPT(10).EQ.0) THEN
                                                                          11750
                                                                          11760
      WRITE(6.312)
   ELSE
                                                                          11770
      WRITE(6,311)
                                                                          11780
                                                                          11790
   END IF
                                                                          11800
   WRITE (6,313)
                                                                          11810
   LM(1)=LA(1)-LG(1)
                                                                          11820
   LG(2)=0.0D0
                                                                          11830
   LM(2)=LA(2)
                                                                          11840
   LG(3) = 0.0D0
                                                                          11850
   LM(3)=LA(3)
                                                                          11860
   DO 40 I=1, LASTS
   IF (SFLAG(I).EQ.0) GO TO 40
                                                                          11870
                                                                          11880
   DAO(I) = ODO
                                                                          11890
   DM(I) = ODO
   IF (LM(I).LT.-30D0.AND.I.GT.30) GO TO 40
                                                                          11900
   IF (LM(I).GE.-60DO) DM(I)=1D1**LM(I)
                                                                          11910
   DLA=LM(I)+LG(I)
                                                                          11920
                                                                          11930
   IF (DLA.GE.-60D0) DAO(I)=1D1\pmDLA
   DG=1D1**LG(I)
                                                                          11940
   IF (I.NE.2) WRITE (6,320) I, SNAME(I), ZSP(I), DM(I), LM(I), DAO(I)
                                                                          11950
  1, DLA, DG, LG(I)
                                                                          11960
                                                                          11970
40 CONTINUE
                                                                          11980
   DO 41 I=1.34
   DGO(I)=0.0DO
                                                                          11990
                                                                          12000
   COR(I)=0.0D0
                                                                          12010
41 CONTINUE
                                                                          12020
   DO 52 I=35.LASTS
                                                                          12030
   IF (SFLAG(I).EQ.0) GO TO 52
                                                                          12040
   LHSP=.FALSE.
                                                                          12050
   LNHSP=.FALSE.
   DO 45 J=1,NSP(I)
                                                                          12060
   IF (LSP(I,J).NE.1) GO TO 45
                                                                          12070
                                                                          12080
   LHSP=.TRUE.
   IF (CSP(I,J).GT.O.ODO) LNHSP=.TRUE.
                                                                          12090
                                                                          12100
   ITH=J
45 CONTINUE
                                                                          12110
                                                                          12120
   DO 42 J=1,NSP(I)
   IF (LSP(I,J).EQ.3.AND.LHSP) GO TO 47
                                                                          12130
                                                                          12140
   IF (LSP(I,J).EQ.3.OR.LSP(I,J).EQ.2) GO TO 42
   IF (LSP(I,J).EQ. 15. AND.LNHSP) GO TO 48
                                                                          12150
   IF (LSP(I,J),EQ.16.AND,LNHSP) GO TO 42
                                                                          12160
   IF (LSP(I,J).NE.1) GO TO 49
                                                                          12170
                                                                          12180
   IF (.NOT.LNHSP) GO TO 42
                                                                          12190
   DO 46 N=1,NSP(I)
                                                                          12200
   IF (LSP(I,N).EQ.15) GO TO 42
                                                                          12210
46 CONTINUE
49 COR(LSP(I,J))=COR(LSP(I,J))+CSP(I,J)*DM(I)
                                                                          12220
                                                                          12230
   GO TO 42
47 DCSP=DABS(CSP(I,J)-DABS(CSP(I,ITH)))
                                                                          12240
   IF (DCSP.GT.0.1D0) GO TO 42
                                                                          12250
                                                                          12260
   COR(31)=COR(31)+CSP(I,J)*DM(I)
                                                                          12270
   GO TO 42
48 IF (CSP(I,ITH).GT.1.1D0) GO TO 42
                                                                          12280
                                                                          12290
   COR(34) = COR(34) + CSP(I,J) * DM(I)
42 CONTINUE
                                                                          12300
```

```
52 CONTINUE
                                                                             12310
C
                                                                             12320
      IF(IOPT(10).EQ.0) THEN
                                                                             12330
                                                                             12340
         WRITE(6.36)
         FORMAT(//39X,'UNSCALED
   36
                                    UNSCALED')
                                                                             12350
                                                                             12360
      ELSE
         WRITE(6.35)
                                                                             12370
         FORMAT(//39X, 'MACINNES
                                    MACINNES')
                                                                             12380
   35
                                                                             12390
      END IF
      WRITE (6.31)
                                                                             12400
   31 FORMAT (14X, 'SPECIES', 4X, 'TOTAL MOL', 5X, 'ACTIVITY', 3X,
                                                                             12410
     1'TOTAL GAMMA'/)
                                                                             12420
      DO 43 I=1,35
                                                                             12430
                                                                             12440
      IF (SFLAG(I).EQ.0) GO TO 43
                                                                             12450
      IF (I.EQ.2.OR.I.EQ.3) GO TO 43
                                                                             12460
      IF (I.EQ.35) GO TO 32
      DM(I)=DM(I)+COR(I)
                                                                             12470
   32 DGO(I)=DAO(I)/DM(I)
                                                                             12480
      WRITE (6,44) SNAME(I),DM(I),DAO(I),DGO(I)
                                                                             12490
   44 FORMAT (14X, A8, 3(3X, 1PD10.4))
                                                                             12500
   43 CONTINUE
                                                                             12510
C
                                                                             12520
      IF (NMGS.EQ.0) GO TO 700
                                                                             12530
                                                                             12540
      STOT=0.0D0
      DO 590 I=4.30
                                                                             12550
                                                                             12560
      STOT=STOT+TOT(I)
  590 CONTINUE
                                                                             12570
      IF (STOT.LT.1.0D-20) GO TO 700
                                                                             12580
  600 WRITE (6,610)
                                                                             12590
  610 FORMAT (//22X,'---- MEAN ACTIVITY COEFFICIENT ----',//
                                                                             12600
     1,27X, 'FORMULA',7X, 'MEAN GAMMA',/)
                                                                             12610
      DO 620 I=1,NMGS
                                                                             12620
                                                                             12630
      EG=0.0D0
      GG=1.0D0
                                                                             12640
      DO 630 J=1,IMEANG(I)
                                                                             12650
      GG=GG*DGO(LMEANG(I,J))**CMEANG(I.J)
                                                                             12660
      EG=EG+CMEANG(I.J)
                                                                             12670
  630 CONTINUE
                                                                             12680
      IF (GG.LT.1.0D-30) GO TO 620
                                                                             12690
      GG=GG**(1.0D0/EG)
                                                                             12700
      WRITE (6,640) NMEANG(I),GG
                                                                             12710
  640 FORMAT (27X, A8, 6X, 1PD10.4)
                                                                             12720
  620 CONTINUE
                                                                             12730
      ****
                                                                             12740
      ENTRY PSUM
                                                                             12750
      ****
                                                                             12760
  700 IF (NSUMS.EQ.0) GO TO 80
                                                                             12770
      KK=0
                                                                             12780
      DO 70 I=1, NSUMS
                                                                             12790
      LL=0
                                                                             12800
      DSUM=ODO
                                                                             12810
                                                                             12820
      K=NSUM(I)
                                                                             12830
      DO 50 J=1.K
      IF (SFLAG(LSUM(I,J)).LE.0) GO TO 50
                                                                             12840
                                                                             12850
      DSUM=DSUM+M(LSUM(I,J))
                                                                             12860
```

```
12870
   50 CONTINUE
      IF (LL.EQ.O) GO TO 70
                                                                              12880
                                                                              12890
      IF (LL.EQ.O.OR.KK.NE.O) GO TO 60
                                                                              12900
      WRITE (6.330)
                                                                              12910
      KK = 1
                                                                              12920
   60 CONTINUE
      WRITE (6,340) SUNAME(I), DSUM
                                                                             12930
   70 CONTINUE
                                                                              12940
                                                                              12950
   80 CONTINUE
      RETURN
                                                                              12960
      ****
C
                                                                              12970
      ENTRY PBUG(D, DPHPE)
                                                                              12980
C
                                                                              12990
                                                                              13000
      WRITE (6,350) D, CR(1), DPHPE
C
           PRINT CHANGES IN PH AND PE
                                                                              13010
      IF (IIN(1).LE.O) GO TO 90
                                                                              13020
      DPH=-DLOG10(1DO+DELTA(1))
                                                                              13030
                                                                              13040
      WRITE (6,360) PH, DPH
                                                                              13050
   90 CONTINUE
                                                                              13060
      IF (IIN(2).LE.O) GO TO 100
      DPE=-DLOG10(1DO+DELTA(IIN(2)))
                                                                              13070
                                                                              13080
      WRITE (6,370) PE,DPE,CR(2)
                                                                              13090
  100 CONTINUE
C
            PRINT TOTALS AND ACTIVITIES
                                                                              13100
      WRITE(6, 105)
                                                                              13110
  105 FORMAT('
                   ERROR
                              EON
                                       TOT
                                                 DELTOT FRAC TOT '
                                                                              13120
     1 'SPECIES
                   MOLALITY
                             DELTA MOL')
                                                                              13130
                                                                              13140
      DO 110 K=4,LASTT
                                                                              13150
      I=IIN(K)
                                                                              13160
      IF (I.LE.O) GO TO 110
                                                                              13170
      DRT=DELTOT(I)/TOT(K)
      TEMPM=1D1##LM(K)
                                                                              13180
                                                                              13190
      DRA=DELTA(I)*DA
      WRITE (6,380) CR(K), TNAME(K), TOT(K), DELTOT(I), DRT, SNAME(K), TEMPM
                                                                              13200
     1.DELTA(I)
                                                                              13210
  110 CONTINUE
                                                                              13220
C
            PRINT MINERAL TOTALS AND DELTAS
                                                                              13230
      IF (NMINS.LE.O) GO TO 130
                                                                              13240
      DO 120 I=1, NMINS
                                                                              13250
      K=MAXT+I
                                                                              13260
                                                                              13270
      J=ILT+I
      WRITE (6,390) CR(K), MNAME(I), TOT(K), DELTA(J)
                                                                              13280
                                                                              13290
  120 CONTINUE
  130 CONTINUE
                                                                              13300
      RETURN
                                                                              13310
C
                                                                              13320
                                                                              13330
      ENTRY PPHASE
      ****
C
                                                                              13340
C
                                                                              13350
C
               PRINT MASS TRANFER FOR MINERAL PHASES
                                                                              13360
C
                                                                              13370
                                                                              13380
      IF (NMINS.EQ.O) RETURN
                                                                              13390
      IF (EVAP) THEN
                                                                              13400
          FACTOR=TOT(MAXT+1)+1DO
          WRITE (6,401)
                                                                              13410
  401 FORMAT (27X,'----PHASE BOUNDARIES----'/
                                                                              13420
```

```
1 /12X.' MASS PRECIPITATED/DISSOLVED FROM INITIAL KILOGRAM WATER'
                                                                            13430
     2 //.9X.'PHASE'.5X.'DELTA PHASE*'.6X.'LOG IAP'.6X.'LOG KT'.
                                                                            13440
     3 6X,'LOG IAP/KT'/)
                                                                            13450
      ELSE
                                                                            13460
         FACTOR=1D0
                                                                            13470
         WRITE (6,400)
                                                                            13480
      END IF
                                                                            13490
      DO 150 I=1, NMINS
                                                                            13500
                                                                            13510
      K=NMINO(I)
      DIAP=0.0D0
                                                                            13520
      DO 140 J=1,K
                                                                            13530
      DIAP=DIAP+(LG(LMINO(I,J))+LM(LMINO(I,J)))*CMINO(I,J)
                                                                            13540
  140 CONTINUE
                                                                            13550
      DSI=DIAP-LKMINO(I)
                                                                            13560
      K=MAXT+I
                                                                            13570
      D1=TOT(K)/FACTOR
                                                                            13580
      IF (IOPT(3).EQ.6.AND.I.EQ.1) D1=0D0
                                                                            13590
      WRITE (6,410) MNAME(I),D1,DIAP,LKMINO(I),DSI
                                                                            13600
      IF (IOPT(3).EQ.6.AND.I.EQ.1) WRITE (6.420)
                                                                            13610
  150 CONTINUE
                                                                            13620
      WRITE (6,430)
                                                                            13630
C
                                                                            13640
C
              PRINT IF ADDING REACTION TO A PHASE BOUNDARY
                                                                            13650
C
                                                                            13660
      IF (IOPT(3).EQ.6) THEN
                                                                            13670
         IF (EVAP) THEN
                                                                            13680
            FACTOR=TOT(MAXT+1)+1D0
                                                                            13690
            WRITE (6,445) FACTOR, MNAME(1)
                                                                            13700
  445 FORMAT (/,1X,'** ',1PD13.6,' IS THE EVAPORATION FACTOR NECESSARY'
1 ,' TO REACH THE ',/4X,14X,A8,' PHASE BOUNDARY.')
                                                                            13710
                                                                            13720
            WRITE (6,221)
                                                                            13730
  221 FORMAT(///17X, 'MOLES OF ELEMENTS REMAINING AFTER REACTION'
                                                                            13740
              /,17X,'----')
                                                                            13750
            WRITE (6,231)
                                                                            13760
  231 FORMAT (/16X, 'ELEMENT', 10X, 'MOLES', 9X, 'LOG MOLES'/)
                                                                            13770
            DO 11 I=4, MAXT
                                                                            13780
            IF (DABS(TOT(I)).LE.1.OD-40) GO TO 11
                                                                            13790
            DMT=TOT(I)/FACTOR
                                                                            13800
                                                                            13810
            DLT=DLOG10(DMT)
            DNAME=TNAME(I)
                                                                            13820
            WRITE (6,240) DNAME, DMT, DLT
                                                                            13830
   11
            CONTINUE
                                                                            13840
            WRITE (6,242) 1DO/FACTOR
                                                                            13850
            FORMAT(/15X, 1PD13.6, ' KILOGRAMS OF WATER REMAINING')
  242
                                                                            13860
            WRITE (6,260)
                                                                            13870
                                                                            13880
            WRITE (6.440) TOT(MAXT+1), MNAME(1)
                                                                            13890
         END IF
                                                                            13900
      END IF
                                                                            13910
      IF (IOPT(3).NE.6.OR.EVAP) RETURN
                                                                            13920
C
                                                                            13930
      ENTRY PREAC
                                                                            13940
C
      ****
                                                                            13950
      WRITE (6,450)
                                                                            13960
      DO 160 I=1, NCOMPS
                                                                            13970
      L=LREAC(I)
                                                                            13980
```

```
IF (L.EQ.O) DN=DN3
                                                                               13990
      IF (L.LT.31) DN=TNAME(L)
                                                                               14000
      IF (L.GT.30) DN=DN1
                                                                               14010
                                                                               14020
      IF (L.GT.30.AND.THMEAN(I).LT.0) DN=DN2
      WRITE (6,460) CREAC(I), DN, THMEAN(I)
                                                                               14030
  160 CONTINUE
                                                                               14040
                                                                               14050
      RETURN
      ****
C
                                                                               14060
                                                                               14070
      ENTRY PLOOK
C
                                                                               14080
      IF (NLOOKS.EQ.O) RETURN
                                                                                14090
                                                                                14100
      KK=0
                                                                                14110
      DO 190 I=1, NLOOKS
                                                                               14120
      K=NLOOK(I)
      DIAP=ODO
                                                                                14130
                                                                                14140
      DO 170 J=1.K
      LL=LLOOK(I,J)
                                                                                14150
                                                                                14160
      IF (SFLAG(LL).LE.O) GO TO 190
      DIAP=DIAP+(LG(LL)+LM(LL))*CLOOK(I,J)
                                                                                14170
  170 CONTINUE
                                                                                14180
                                                                                14190
      IF (KK.NE.O) GO TO 180
                                                                                14200
      KK = 1
                                                                                14210
      WRITE (6,470)
  180 CONTINUE
                                                                                14220
      DSI=DIAP-LKLOOK(I)
                                                                                14230
                                                                                14240
      WRITE (6,480) NAMELK(I), DIAP, LKLOOK(I), DSI
                                                                                14250
  190 CONTINUE
      RETURN
                                                                                14260
      ****
C
                                                                                14270
      ENTRY PDATA
                                                                                14280
C
                                                                                14290
                                                                                14300
      IF (IOPT(1).NE.1) RETURN
                                                                                14310
      IF (IDATA.GT.O) RETURN
                                                                                14320
      IDATA=1
      REWIND (UNIT=11)
                                                                                14330
                                                                                14340
      WRITE (6,490)
                                                                                14350
  200 CONTINUE
      READ (11,500,END=210) CARD
                                                                                14360
      WRITE (6,510) CARD
                                                                                14370
      GO TO 200
                                                                                14380
  210 CONTINUE
                                                                                14390
                                                                                14400
      RETURN
                                                                                14410
  220 FORMAT (///24X,'TOTAL MOLALITIES OF ELEMENTS'/,24X,'---- ----- 14420
     1-- -- -----')
                                                                                14430
  230 FORMAT (/16x, 'ELEMENT', 10x, 'MOLALITY', 9x, 'LOG MOLALITY'/)
                                                                                14440
  240 FORMAT (16X, A8, 6X, 1PD13.6, 8X, OPF9.4)
                                                                                14450
  250 FORMAT (16X, 'PURE WATER')
                                                                                14460
  260 FORMAT (//)
                                                                                14470
  270 FORMAT (//,24X,'----DESCRIPTION OF SOLUTION----')
                                                                                14480
  280 FORMAT (/,39x,'PH = ',F8.4/29x,'ACTIVITY H20 = ',F8.4/22x
                                                                                14490
     1, 'OSMOTIC COEFFICIENT = ',F8.4/,27X, 'IONIC STRENGTH = ',F8.4/30X
                                                                                14500
     2, 'TEMPERATURE = ',F8.4/33X, 'PRESSURE = ',F8.4,' ATM',/27X
3, 'DENSITY OF H2O = ',F8.4,' G/CC',/23X, 'ELECTRICAL BALANCE = '
                                                                                14510
                                                                                14520
     4,1PD12.4/25X,'TOTAL ALKALINITY = ',D12.4/31X,'ITERATIONS = ',OPI3) 14530
  290 FORMAT (29X, 'TOTAL CARBON = ', 1PD12.4)
                                                                                14540
```

```
300 FORMAT (20X, 'MOLES OF ', A8, ' ADDED = ',D12.4)
                                                                               14550
  310 FORMAT (///,26x,23('-')/26x,'DISTRIBUTION OF SPECIES'/26x,23('-')) 14560
  311 FORMAT (43X, 'MACINNES SCALE
                                          MACINNES SCALE ')
                                                                               14570
  312 FORMAT (43X.'
                       UNSCALED
                                                                               14580
                                             UNSCALED')
  313 FORMAT (2X, 'I', 2X, 'SPECIES', 4X, 'Z', 3X, 'MOLALITY', 2X, 'LOG MOLAL',
                                                                               14590
     1 3X, 'ACTIVITY', 2X, 'LOG ACT', 4X, 'GAMMA', 3X, 'LOG GAM'/)
                                                                               14600
  320 FORMAT (1X,13,1X,A8,1X,F4.1,1X,1PE10.3,2X,0PF7.3,2X,2(1PE10.3,1X,
                                                                               14610
                                                                               14620
     10PF7.3.1X))
  330 FORMAT (///25X, 'SUMS OF SPECIES'/)
                                                                               14630
  340 FORMAT (22X, A8,' = ', 1PD13.6)
                                                                               14640
  350 FORMAT (/1x, 'REDUCTION FACTOR: ',1PD12.5,3x, 'ELECT: ',D12.5,3x,
                                                                               14650
     1'DPHPE: ',D12.5)
                                                                               14660
  360 FORMAT (1X,'PH = ',F8.4,5X,'DPH = ',F8.4)
                                                                               14670
  370 FORMAT (1X, 'PE = ', F8.4, 5X, 'DPE = ', F8.4, 5X, 'DTHOR = ', 1PD12.5)
                                                                               14680
  380 FORMAT (1X,1PD12.5,1X,A4,1X,D11.4,2(1X,D8.1),1X,A8,1X,D11.4,1X,
                                                                               14690
     1D8.1)
                                                                               14700
  390 FORMAT (1x,1PD12.5,1x,A4,1x,D11.4,2(1x,D8.1))
                                                                               14710
  400 FORMAT (27X,'---PHASE BOUNDARIES----'//,9X,'PHASE',5X,'DELTA PHAS 14720
     1E*',6X,'LOG IAP',6X,'LOG KT',6X,'LOG IAP/KT'/)
                                                                               14730
  410 FORMAT (8x, A8, 2x, 1PD13.6, 3(4x, OPF9.4))
                                                                               14740
  420 FORMAT (1H+,5X,'**')
                                                                               14750
  430 FORMAT (/,1x,'* NEGATIVE DELTA PHASE INDICATES PRECIPITATION',/,3X 14760
                                                                               14770
     1, 'AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.')
  440 FORMAT (/,1X,'** ',1PD13.6,' MOLES OF REACTION',' HAVE BEEN ADDED
                                                                               14780
     1TO THE SOLUTION', /, 4X, 'TO REACH THE ', A8,' PHASE BOUNDARY.')
                                                                               14790
  450 FORMAT (/,6x,'REACTION IS:')
                                                                               14800
  460 FORMAT (15X,F12.6,' MOLES OF ',A8,' VALENCE = ',F6.3)
                                                                               14810
  470 FORMAT (//28X,'---- LOOK MIN IAP ----'//15X,'PHASE',8X,'LOG IAP',6 14820
     1X,'LOG KT',6X,'LOG IAP/KT'/)
                                                                               14830
  480 FORMAT (14X, A8, 3(4X, F9.4))
                                                                               14840
                                                                               14850
  490 FORMAT (1H1,25X,'DATA: CARD IMAGES FROM DISK'/)
  500 FORMAT (A80)
                                                                               14860
  510 FORMAT (1X, A80)
                                                                               14870
      END
                                                                               14880
      SUBROUTINE READ
                                                                               14890
$INSERT COMMON.BLOCKS
                                                                               14900
      CHARACTER *12 SUBS, SUB, TNAM, DELETE
                                                                               14910
      LOGICAL LELEM(4:30)
                                                                               14920
      DIMENSION ISUB(12), SUBS(12), LT(30), DTOT(30)
                                                                               14930
      LOGICAL EVAP
                                                                               14940
      COMMON /EVAP/ EVAP
                                                                               14950
      COMMON / PEL / LELEM
                                                                               14960
                  'TEMP ','MINERALS ','SOLUTION ','REACTION ',
'STEPS ','ELEMENTS ','SPECIES ','END ',
'LOOK MIN ','SUMS ','NEUTRAL ','MEAN GAM '/
      DATA SUBS /'TEMP
                                                                               14970
     1
                                                                               14980
                                                                               14990
      DATA NLKS, NSMS, NMG /3*0/
                                                                               15000
      DATA DELETE /'DELETE
                                                                               15010
   10 CONTINUE
                                                                               15020
      IERR=0
                                                                               15030
      ISOLV(1)=0
                                                                               15040
      ISOLV(2)=0
                                                                               15050
                                                                               15060
      NRMINS=0
      NLOOKS=NLKS
                                                                               15070
      NSUMS=NSMS
                                                                               15080
      EVAP=.FALSE.
                                                                               15090
      DO 20 I=1,11
                                                                               15100
```

```
ISUB(I)=0
                                                                              15110
                                                                              15120
   20 CONTINUE
C
                                                                              15130
           READ TITLE CARD
      READ (5,420,END=410) (TITLE(I), I=1,20)
                                                                              15140
C
           READ OPTION CARD
                                                                              15150
                                                                              15160
      READ (5,430) (IOPT(I), I=1,10), NSTEPS, NCOMPS, VO
               SET MANDATORY OPTION
C
                                                                              15170
      IOPT(5)=0
                                                                              15180
      IOPT(6)=2
                                                                              15190
      IF (IOPT(1).EQ.1) CALL PDATA
                                                                              15200
                                                                              15210
      WRITE (6,440) (TITLE(I), I=1,20)
                                                                              15220
      WRITE (6,450) (IOPT(I), I=1,10), NSTEPS, NCOMPS, VO
      IREAD=0
                                                                              15230
                                                                              15240
      IFILE=5
                                                                              15250
      GO TO 30
C
      ****
                                                                              15260
                                                                              15270
      ENTRY RDATA (KFILE)
C
      ****
                                                                              15280
                                                                              15290
      JFILE=6
      WRITE (JFILE, 460)
                                                                              15300
      IREAD=1
                                                                              15310
      IFILE=KFILE
                                                                              15320
   30 CONTINUE
                                                                              15330
C
                                                                              15340
            READ SUBROUTINE CARD AND BRANCH
   40 CONTINUE
                                                                              15350
      READ (IFILE, 470) SUB, ISOLN
                                                                              15360
                                                                              15370
      DO 50 I=1,12
      IF (SUB.NE.SUBS(I)) GO TO 50
                                                                              15380
                                                                              15390
      GO TO (60,70,110,150,170,180,220,400,260,350,390,1000), I
                                                                              15400
   50 CONTINUE
      WRITE (6,480) SUB
                                                                              15410
      GO TO 40
                                                                              15420
C
                                                                              15430
C
                                                                              15440
            READ TEMP DATA
C
                                                                              15450
                                                                              15460
   60 CONTINUE
      WRITE (6,490)
                                                                              15470
      IF (IOPT(4).EQ.0) GO TO 40
                                                                              15480
      NTEMP=IOPT(4)
                                                                              15490
      IF (NTEMP.EQ.3) NTEMP=NSTEPS
                                                                              15500
                                                                              15510
      READ (5,500) (TSTEP(I), I=1,NTEMP)
      WRITE (6.510) (TSTEP(I), I=1, NTEMP)
                                                                              15520
                                                                              15530
      ISUB(1)=1
      GO TO 40
                                                                              15540
С
                                                                              15550
C
                                                                              15560
            READ MINERAL DATA
                                                                              15570
   70 CONTINUE
                                                                               15580
                                                                               15590
      WRITE (6,520)
                                                                               15600
      I=0
   80 CONTINUE
                                                                               15610
      I = I + 1
                                                                              15620
C
                                                                               15630
            READ NAME ETC. FOR MINERAL
      READ (5,530) MNAME(I), NMINO(I), THMIN(I), LKTOM(I), DHMIN(I), MFLAG(I) 15640
                                                                               15650
      1.SIMIN(I)
      WRITE (6,540) MNAME(I),NMINO(I),THMIN(I),LKTOM(I),DHMIN(I),MFLAG
                                                                               15660
```

```
15670
     1(I), SIMIN(I)
                                                                             15680
      IF (NMINO(I).EQ.0) GO TO 100
                                                                             15690
      NRMINS=I
                                                                             15700
C
            READ COEFFICIENTS FOR MINERAL
      K=NMINO(I)
                                                                             15710
      READ (5,550) (LMINO(I,J),CMINO(I,J),J=1,K)
                                                                             15720
      WRITE (6,560) (LMINO(I,J),CMINO(I,J),J=1,K)
                                                                             15730
            READ ANALYTIC EXPRESSION COEFFICIENTS
                                                                             15740
C
      IF (MFLAG(I).EQ.O) GO TO 90
                                                                             15750
      READ (5.570) (AMIN(I,J),J=1.5)
                                                                             15760
      WRITE (6.580) (AMIN(I,J),J=1.5)
                                                                             15770
                                                                             15780
   90 CONTINUE
      GO TO 80
                                                                             15790
  100 CONTINUE
                                                                             15800
                                                                             15810
      CALL MINCON
                                                                             15820
      CALL CHKMIN(IERR)
                                                                             15830
      ISUB(2)=1
                                                                             15840
      GO TO 40
C
                                                                             15850
C
                                                                             15860
            READ A SOLUTION
C
                                                                             15870
                                                                             15880
  110 CONTINUE
      WRITE (6,590) ISOLN
                                                                             15890
C
            READ SOLUTION TITLE
                                                                             15900
      READ (5,600) (HEAD(ISOLN,J),J=1,20)
                                                                             15910
      WRITE (6.610) (HEAD(ISOLN, J), J=1,20)
                                                                             15920
C
            READ NTOTS, PH, EH
                                                                             15930
      READ (5,620) NTOTS, IALK(ISOLN), IUNITS(ISOLN), PH, PE, TEMP(ISOLN),
                                                                             15940
     1SDENS(ISOLN)
                                                                              15950
C
               FIX PE AT 4.0
                                                                              15960
      PE=4.0
                                                                              15970
      IF (DABS(SDENS(ISOLN)).LE.1.OD-40) SDENS(ISOLN)=1.0
                                                                             15980
      WRITE (6,630) NTOTS, IALK(ISOLN), IUNITS(ISOLN), PH, PE, TEMP(ISOLN),
                                                                              15990
                                                                              16000
     1SDENS(ISOLN)
C
            READ TOTALS
                                                                              16010
                                                                              16020
      DO 120 I=1,MAXT
      TOTAL(ISOLN, I) = ODO
                                                                              16030
  120 CONTINUE
                                                                              16040
                                                                              16050
      IF (NTOTS.EQ.O) GO TO 140
                                                                              16060
      READ (5,640) (LT(J),DTOT(J),J=1,NTOTS)
      WRITE (6,650) (LT(J),DTOT(J),J=1,NTOTS)
                                                                              16070
C
                                                                              16080
            ZERO TOTAL AND INSERT VALUES
                                                                              16090
      NTOTM=0
                                                                              16100
      DO 130 I=1, NTOTS
C
            THROW OUT ELEMENTS NOT IN PITZER'S MODEL
                                                                              16110
      IF (LELEM(LT(I))) GO TO 125
                                                                              16120
      NTOTM=NTOTM+1
                                                                              16130
      GO TO 130
                                                                              16140
  125 TOTAL(ISOLN,LT(I))=DTOT(I)
                                                                              16150
  130 CONTINUE
                                                                              16160
      NTOTS=NTOTS-NTOTM
                                                                              16170
C
                                                                              16180
                                                                              16190
      CALL UNITS(ISOLN)
  140 CONTINUE
                                                                              16200
                                                                              16210
      TOTAL(ISOLN, 1) = 1D1**(-PH)
      TOTAL(ISOLN, 2) = 1D1**(-PE)
                                                                              16220
```

```
ISOLV(ISOLN)=1
                                                                             16230
                                                                              16240
      ISUB(3)=1
      GO TO 40
                                                                              16250
C
                                                                              16260
C
                                                                             16270
           READ REACTION DATA
                                                                             16280
  150 CONTINUE
                                                                              16290
                                                                             16300
      IF (NCOMPS.EQ.O) GO TO 40
                                                                             16310
      WRITE(6,660)
C
           READ COEFFICIENTS OF REACTION
                                                                             16320
      READ (5,670) (LREAC(I), CREAC(I), THMEAN(I), I=1, NCOMPS)
                                                                             16330
      WRITE (6,680) (LREAC(I), CREAC(I), THMEAN(I), I=1, NCOMPS)
                                                                             16340
                                                                             16350
      THREAC=ODO
                                                                             16360
      DO 160 I=1.NCOMPS
      THREAC=THREAC+THMEAN(I)*CREAC(I)
                                                                             16370
                                                                              16380
      IF(IOPT(3).EQ.6.AND.NCOMPS.EQ.1.AND.LREAC(1).EQ.3) THEN
                                                                             16390
                                                                             16400
         EVAP=.TRUE.
                                                                             16410
      END IF
      ISUB(4)=1
                                                                              16420
                                                                              16430
      GO TO 40
                                                                              16440
C
C
                                                                              16450
            READ STEPS DATA
                                                                              16460
                                                                              16470
  170 CONTINUE
                                                                              16480
      IF (NSTEPS.EQ.O.OR.IOPT(3).EQ.5) GO TO 40
                                                                              16490
      WRITE(6,690)
                                                                              16500
      K=NSTEPS
                                                                              16510
      IF (IOPT(3).EQ.4) K=1
                                                                              16520
      READ (5,700) (XSTEP(I), I=1,K)
                                                                              16530
      WRITE (6,710) (XSTEP(I), I=1,K)
                                                                              16540
      ISUB(5)=1
      GO TO 40
                                                                              16550
C
                                                                              16560
C
            READ ELEMENT CARDS
                                                                              16570
                                                                              16580
  180 CONTINUE
                                                                              16590
                                                                              16600
      WRITE(6.720)
C
            READ ELEMENTS UNTIL BLANK CARD
                                                                              16610
                                                                              16620
  190 CONTINUE
      READ (IFILE, 730) TNAM, NELT, TGFW
                                                                              16630
      IF (IREAD.EQ.O) WRITE (6,740) TNAM, NELT, TGFW
                                                                              16640
                                                                              16650
      IF (NELT.EQ.0) GO TO 210
                                                                              16660
      IF (NELT.GT.3.AND.NELT.LE.29) GO TO 200
      WRITE (6,750) NELT, TNAM, SUBS(6)
                                                                              16670
                                                                              16680
      ENDFILE (UNIT=6)
      STOP 'INDEX ERROR IN SUBROUTINE READ'
                                                                              16690
  200 CONTINUE
                                                                              16700
      IF (IREAD.EQ.1) LELEM(NELT)=.TRUE.
                                                                              16710
                                                                              16720
      TNAME(NELT)=TNAM
                                                                              16730
      GFW(NELT)=TGFW
                                                                              16740
      GO TO 190
  210 CONTINUE
                                                                              16750
      ISUB(6)=1
                                                                              16760
                                                                              16770
      GO TO 40
C
                                                                              16780
```

```
C
           READ SPECIES CARDS
                                                                              16790
                                                                              16800
                                                                              16810
  220 CONTINUE
      WRITE (6,760)
                                                                              16820
                                                                              16830
           READ SPECIES CARDS UNTIL BLANK CARD
  230 CONTINUE
                                                                              16840
                                                                              16850
      READ (IFILE, 770) I
                                                                              16860
      IF (IREAD.EQ.0) WRITE (6.780) I
           READ SPECIES NAME ETC.
                                                                              16870
C
                                                                              16880
      IF (I.EQ.0) GO TO 250
      IF (I.GT.O.AND.I.LE.MAXS) GO TO 240
                                                                              16890
                                                                              16900
      READ (IFILE, 790) TNAM
      WRITE (6,750) I, TNAM, SUBS(7)
                                                                              16910
      ENDFILE (UNIT=6)
                                                                              16920
      STOP 'INDEX ERROR IN SUBROUTINE READ'
                                                                              16930
  240 CONTINUE
                                                                              16940
      READ (IFILE, 790) SNAME(I), NSP(I), KFLAG(I), GFLAG(I), ZSP(I), THSP(I), 16950
     1DHA(I), (ADHSP(I,J), J=1,2), ALKSP(I)
                                                                              16960
                                                                              16970
      IF (IREAD.EQ.O) WRITE (6,800)SNAME(I),NSP(I),KFLAG(I),GFLAG(I)
                                                                              16980
     1, ZSP(I), THSP(I), DHA(I), (ADHSP(I, J), J=1,2), ALKSP(I)
      IF (NSP(I).EQ.0) GO TO 230
                                                                              16990
                                                                              17000
C
            READ LOG K DATA FOR SPECIES
      READ (IFILE, 810) LKTOSP(I), DHSP(I), (ASP(I,J), J=1,5)
                                                                              17010
      IF (IREAD.EQ.0) WRITE (6.820) LKTOSP(I), DHSP(I), (ASP(I,J),J=1,5)
                                                                              17020
C
                                                                              17030
            READ COEFFICIENTS
      K=NSP(I)
                                                                              17040
      READ (IFILE, 830) (LSP(I,J), CSP(I,J), J=1,K)
                                                                              17050
      IF (IREAD.EQ.0) WRITE (6,840) (LSP(I,J),CSP(I,J),J=1,K)
                                                                              17060
      GO TO 230
                                                                              17070
  250 CONTINUE
                                                                              17080
      ISUB(7)=1
                                                                              17090
                                                                              17100
      CALL CHKSPE(IERR)
      GO TO 40
                                                                              17110
                                                                              17120
C
           READ MINERALS TO LOOK AT
                                                                              17130
                                                                              17140
  260 CONTINUE
                                                                              17150
      WRITE (6.850)
                                                                              17160
      I=NLKS
                                                                              17170
  270 CONTINUE
                                                                              17180
      I = I + 1
                                                                              17190
      IF (I.LT.41) GO TO 280
                                                                              17200
                                                                              17210
      WRITE (6,860)
      I=40
                                                                              17220
  280 CONTINUE
                                                                              17230
            READ NAME ETC.
                                                                              17240
      READ (IFILE,870) NAMELK(1),NLOOK(1),LKOLK(1),DHLOOK(1),LOOKFL(1)
                                                                              17250
      IF (IREAD.EQ.O) WRITE (6,880) NAMELK(I), NLOOK(I), LKOLK(I), DHLOOK
                                                                              17260
                                                                              17270
     1(I),LOOKFL(I)
      IF (NAMELK(I).NE.DELETE) GO TO 290
                                                                              17280
      I=0
                                                                              17290
      NLOOKS=I
                                                                              17300
      GO TO 270
                                                                              17310
                                                                              17320
  290 CONTINUE
      IF (NLOOK(I).EQ.0) GO TO 340
                                                                              17330
C
            CHECK TO SEE IF MINERAL IS ALREADY IN THE LIST
                                                                              17340
```

```
17350
      IF (I.LE.1) GO TO 310
      L=I-1
                                                                             17360
                                                                             17370
      DO 300 N=1.L
      IF (NAMELK(I).NE.NAMELK(N)) GO TO 300
                                                                             17380
                                                                             17390
      NLOOK(N)=NLOOK(I)
      LKOLK(N)=LKOLK(I)
                                                                             17400
                                                                             17410
      DHLOOK(N)=DHLOOK(I)
                                                                             17420
      LOOKFL(N)=LOOKFL(I)
      I=I-1
                                                                             17430
                                                                             17440
      GO TO 320
                                                                             17450
  300 CONTINUE
                                                                             17460
  310 CONTINUE
      N = I
                                                                             17470
      NLOOKS=I
                                                                             17480
           N IS THE NUMBER FOR THE MINERAL BEING READ.
                                                                             17490
C
  320 CONTINUE
                                                                             17500
                                                                             17510
            READ COEFFICIENTS
      K=NLOOK(N)
                                                                             17520
      READ (IFILE.550) (LLOOK(N,J),CLOOK(N,J),J=1,K)
                                                                             17530
                                                                             17540
      IF (IREAD.EQ.0) WRITE (6.560) (LLOOK(N,J),CLOOK(N,J),J=1,K)
C
            READ ANALYTIC EXPRESSION
                                                                             17550
                                                                             17560
      IF (LOOKFL(N).EQ.0) GO TO 330
      READ (IFILE, 570) (ALOOK(N,J),J=1,5)
                                                                             17570
      IF (IREAD.EQ.0) WRITE (6.580) (ALOOK(N,J),J=1,5)
                                                                             17580
  330 CONTINUE
                                                                             17590
      GO TO 270
                                                                             17600
                                                                             17610
  340 CONTINUE
                                                                             17620
      NLKS=NLOOKS
                                                                             17630
      CALL CHKLK
                                                                             17640
      ISUB(9)=1
      GO TO 40
                                                                             17650
C
                                                                             17660
C
            READ LISTS FOR SUMS OF SPECIES
                                                                             17670
                                                                             17680
                                                                             17690
  350 CONTINUE
      WRITE (6,890)
                                                                             17700
                                                                             17710
      I=NSMS
  360 CONTINUE
                                                                             17720
      I=I+1
                                                                             17730
                                                                             17740
      READ (IFILE, 900) SUNAME(I), K
                                                                             17750
      IF (IREAD.EQ.O) WRITE (6,910) SUNAME(I), K
      IF (SUNAME(I).NE.DELETE) GO TO 370
                                                                             17760
      I=0
                                                                             17770
      NSUMS=0
                                                                             17780
      GO TO 360
                                                                             17790
                                                                             17800
  370 CONTINUE
      IF (K.EQ.0) GO TO 380
                                                                             17810
                                                                             17820
      NSUM(I)=K
                                                                             17830
      NSUMS=I
                                                                             17840
      READ (IFILE, 920) (LSUM(I,J), J=1,K)
      IF (IREAD.EQ.0) WRITE (6,930) (LSUM(I,J),J=1,K)
                                                                             17850
      GO TO 360
                                                                             17860
                                                                             17870
  380 CONTINUE
      NSMS=NSUMS
                                                                             17880
      ISUB(10)=1
                                                                             17890
      GO TO 40
                                                                             17900
```

```
C
                                                                             17910
С
           READ SPECIES TO ADJUST FOR ELECTRICAL NEUTRALITY
                                                                             17920
                                                                             17930
                                                                             17940
  390 CONTINUE
      WRITE (6.940)
                                                                             17950
      READ (5,950) LPOS, LNEG
                                                                             17960
      WRITE (6,960) LPOS, LNEG
                                                                             17970
      ISUB(11)=1
                                                                             17980
                                                                             17990
      GO TO 40
C
                                                                             18000
C
           END DATA ENTRY FOR THIS SIMULATION
                                                                             18010
                                                                             18020
                                                                             18030
  400 CONTINUE
                                                                             18040
      IF (IREAD.EQ.1) RETURN
      IF (IERR.LE.O) GO TO 405
                                                                             18050
                                                                             18060
      ENDFILE (UNIT=6)
      STOP 'ERROR IN SPECIES OR MINERAL EQUATIONS'
                                                                             18070
  405 IF (IOPT(4).GT.O.AND.ISUB(1).EQ.O) IERR=1
                                                                             18080
      IF (IOPT(3).GT.O.AND.IOPT(3).LT.5.AND.ISUB(5).EQ.O) IERR=5
                                                                             18090
      IF (IOPT(3).GE.3.AND.IOPT(3).LT.5.AND.ISUB(4).EQ.0) IERR=4
                                                                            18100
      IF (IOPT(3).EQ.5.AND.ISUB(2).EQ.0) IERR=2
                                                                             18110
      IF (IOPT(3).EQ.6.AND.ISUB(2).EQ.0) IERR=2
                                                                            18120
      IF (IOPT(3).EQ.6.AND.ISUB(4).EQ.0) IERR=4
                                                                             18130
                                                                             18140
      IF (IOPT(2).EQ.2.AND.ISUB(11).EQ.0) IERR=11
      IF (IERR.EQ.O) RETURN
                                                                             18150
                                                                             18160
      WRITE (6,970) SUBS(IERR)
                                                                             18170
      IF (IOPT(7).EQ.0) GO TO 10
                                                                             18180
  410 CONTINUE
                                                                             18190
      ENDFILE (UNIT=6)
      STOP 'NORMAL TERMINATION'
                                                                             18200
C
                                                                             18210
C
                                                                             18220
      READ MEAN GAMMAS
                                                                             18230
 1000 WRITE (6,980)
                                                                             18240
                                                                             18250
 1005 NMG=NMG+1
      IF (NMG.LE.40) GO TO 1100
                                                                             18260
      WRITE (6,990)
                                                                             18270
 1010 READ (IFILE, 1020) NM
                                                                             18280
 1020 FORMAT (8X,12)
                                                                             18290
                                                                             18300
      IF (NM.EQ.0) GO TO 40
      GO TO 1010
                                                                             18310
 1100 READ (IFILE, 995) NMEANG(NMG), IMEANG(NMG), (LMEANG(NMG, J)
                                                                             18320
                                                                             18330
     1, CMEANG(NMG, J), J=1,3)
      IF (IREAD.EQ.O) WRITE (6,996) NMEANG(NMG), IMEANG(NMG)
                                                                             18340
     1, (LMEANG(NMG, J), CMEANG(NMG, J), J=1, IMEANG(NMG))
                                                                             18350
                                                                             18360
      IF (NMEANG(NMG).EQ.DELETE) GO TO 1150
      IF (IMEANG(NMG).NE.O) GO TO 1110
                                                                             18370
      NMG=NMG-1
                                                                             18380
      GO TO 1200
                                                                             18390
 1110 DO 1120 J=1,NMG-1
                                                                             18400
                                                                             18410
      IF (NMEANG(J).EQ.NMEANG(NMG)) GO TO 1130
 1120 CONTINUE
                                                                             18420
      GO TO 1005
                                                                             18430
 1130 IMEANG(J)=IMEANG(NMG)
                                                                             18440
      DO 1140 I=1, IMEANG(J)
                                                                             18450
      LMEANG(J,I)=LMEANG(NMG,I)
                                                                             18460
```

```
18470
     CMEANG(J,I)=CMEANG(NMG,I)
1140 CONTINUE
                                                                             18480
                                                                             18490
     NMG=NMG-1
     GO TO 1005
                                                                             18500
1150 NMG=0
                                                                             18510
                                                                             18520
     GO TO 1005
1200 NMGS=NMG
                                                                             18530
     GO TO 40
                                                                             18540
                                                                             18550
                                                                             18560
420 FORMAT (20A4)
430 FORMAT (1011,12,12,6X,F10.5)
                                                                             18570
440 FORMAT (1H1,20A4)
                                                                             18580
450 FORMAT (1X,10I1,I2,I2,6X,F10.5)
                                                                             18590
460 FORMAT (10X, 'DATA READ FROM DISK'/)
                                                                             18600
470 FORMAT (A8, 1X, I1)
                                                                             18610
480 FORMAT (1x,'** ',A8,' ** INPUT UNKNOWN')
                                                                             18620
490 FORMAT (1X, 'TEMP')
                                                                             18630
500 FORMAT (8F10.1)
                                                                             18640
510 FORMAT (1X,8G10.3)
                                                                             18650
520 FORMAT (1X, 'MINERALS')
                                                                             18660
530 FORMAT (A8,2X,12,3X,3F10.2,5X,11,9X,F10.3)
                                                                             18670
540 FORMAT (1X, A8, 2X, I2, 3X, 3G10.2, 5X, I1, 9X, F10.3)
                                                                             18680
550 FORMAT ((5(I4,F11.3)))
                                                                             18690
560 FORMAT ((1x,5(I4,G11.3)))
                                                                             18700
 570 FORMAT (5E12.5)
                                                                             18710
580 FORMAT (1X, 1P5E12.4)
                                                                             18720
590 FORMAT (1X, 'SOLUTION ', I1)
                                                                             18730
 600 FORMAT (20A4)
                                                                             18740
610 FORMAT (1X,20A4)
                                                                             18750
 620 FORMAT (12,13,12,3X,4F10.0)
                                                                             18760
 630 FORMAT (1X,12,13,12,3X,4G10.3)
                                                                             18770
 640 FORMAT ((5(I4,D11.3)))
                                                                             18780
 650 FORMAT ((1X,5(I4,1PD11.3)))
                                                                             18790
 660 FORMAT (1X, 'REACTION')
                                                                             18800
 670 FORMAT ((4(14,2F8.3)))
                                                                             18810
 680 FORMAT ((1X,4(14,2F8.3)))
                                                                             18820
 690 FORMAT (1X, 'STEPS')
                                                                             18830
 700 FORMAT (8F10.3)
                                                                             18840
 710 FORMAT (1X,8G10.3)
                                                                             18850
 720 FORMAT (1X, 'ELEMENTS')
                                                                             18860
 730 FORMAT (A9, 1X, 12, 3X, F10.0)
                                                                             18870
 740 FORMAT (1X,A9,2X,I2,3X,E16.5)
                                                                             18880
 750 FORMAT (1X,14,2X,A8,5X,A8,' INDEX NUMBER IS OUT OF RANGE.'//1X,'CA 18890
    1LCULATION TERMINATED.')
                                                                             18900
 760 FORMAT (1X, 'SPECIES')
                                                                             18910
 770 FORMAT (13)
                                                                             18920
 780 FORMAT (1X, I3)
                                                                             18930
 790 FORMAT (A8,2X,13,11,11,6F10.3)
                                                                             18940
 800 FORMAT (1X, A8, 2X, I3, I1, I1, 6F10.3)
                                                                             18950
 810 FORMAT (2F10.3,5E12.5)
                                                                             18960
 820 FORMAT (1X,2F10.3,5G12.5)
                                                                             18970
 830 FORMAT (6(13, F7.3))
                                                                             18980
 840 FORMAT ((1x,6(13,F7.3)))
                                                                             18990
850 FORMAT (1X, 'LOOK MIN')
860 FORMAT (1X, '***** LOOK MIN ARRAY ALREADY HAS 40 MINERALS. *****')
                                                                             19000
                                                                             19010
 870 FORMAT (A8,2X,12,13X,2F10.2,5X,11)
                                                                             19020
```

```
19030
  880 FORMAT (1X, A8, 2X, I2, 13X, 2G10.3, 5X, I1)
                                                                              19040
  890 FORMAT (1X, 'SUMS')
  900 FORMAT (A8,2X,12)
                                                                              19050
  910 FORMAT (1X, A8, 2X, I2)
                                                                              19060
                                                                              19070
  920 FORMAT (2014)
  930 FORMAT (1X,2014)
                                                                              19080
  940 FORMAT (1X, 'NEUTRAL')
                                                                              19090
  950 FORMAT (215)
                                                                              19100
  960 FORMAT (1X,215)
                                                                              19110
  970 FORMAT (//1x,14('*')/1x,'TERMINAL ERROR INPUT LACKED ',A8,' CARDS 19120
     1'/1X, 14('*')
                                                                              19130
                                                                              19140
  980 FORMAT (1X, 'MEAN GAM')
  990 FORMAT (1X, '**** MEAN GAM ARRARY ALREADY HAS 40 SALTS. *****')
                                                                              19150
  995 FORMAT (A8,12,3(14,F6.0))
                                                                              19160
  996 FORMAT (1X, A8, I2, 3(I4, F6.2))
                                                                              19170
                                                                              19180
      END
      SUBROUTINE INOUT
                                                                              19190
$INSERT COMMON.BLOCKS
                                                                              19200
                                                                              19210
C
            DETERMINE TOTALS TO BE INCLUDED AS EQUATIONS IN MATRIX.
                                                                              19220
C
                                                                              19230
      DO 10 I=4, MAXT
                                                                              19240
      IIN(I)=0
                                                                              19250
      IF (TOT(I).LE.O.ODO) GO TO 10
                                                                              19260
                                                                              19270
      IIN(I)=1
   10 CONTINUE
                                                                              19280
      LAST=0
                                                                              19290
      LASTT=0
                                                                              19300
                                                                              19310
      DO 20 I=1, MAXT
                                                                              19320
      IF (IIN(I).EQ.0) GO TO 20
                                                                              19330
      LAST=LAST+1
                                                                              19340
      IIN(I)=LAST
      LASTT=I
                                                                              19350
      IOUT(LAST)=I
                                                                              19360
   20 CONTINUE
                                                                              19370
                                                                              19380
      ILT=LAST
C
            PICK SPECIES TO BE INCLUDED
                                                                              19390
      IF (LASTT.LT.4) LASTT=4
                                                                              19400
      SFLAG(1)=1
                                                                              19410
                                                                              19420
      SFLAG(2)=1
                                                                              19430
      SFLAG(3)=1
                                                                              19440
      DO 30 I=4.MAXT
      SFLAG(I)=0
                                                                              19450
      IF (IIN(I).GT.0) SFLAG(I)=1
                                                                              19460
                                                                              19470
   30 CONTINUE
      DO 50 I=MAXT1, MAXS
                                                                              19480
      SFLAG(I)=0
                                                                              19490
      K=NSP(I)
                                                                              19500
                                                                              19510
      IF (K.EQ.0) GO TO 50
      DO 40 J=1.K
                                                                              19520
      IF (SFLAG(LSP(I,J)).LE.0) GO TO 50
                                                                              19530
   40 CONTINUE
                                                                              19540
      SFLAG(I)=1
                                                                              19550
      LASTS=I
                                                                              19560
   50 CONTINUE
                                                                              19570
C
                                                                              19580
           ZERO ARRAY AR
```

```
19590
      DO 70 I=1, MAXEQ
      DO 60 J=1, MAXEQ
                                                                            19600
      AR(I,J)=ODO
                                                                            19610
   60 CONTINUE
                                                                            19620
   70 CONTINUE
                                                                            19630
C
           PUT MINERAL COEFFICIENTS INTO FULL ARRAY
                                                                            19640
      IF (NMINS.LE.O) GO TO 120
                                                                            19650
      DO 90 I=1, NMINS
                                                                            19660
      K=NMIN(I)
                                                                            19670
      L=MAXT+I
                                                                            19680
                                                                            19690
      DO 80 J=1.K
      K1=LMIN(I,J)
                                                                            19700
      AR(K1,L)=-CMIN(I,J)
                                                                            19710
      AR(L,K1)=CMIN(I,J)
                                                                            19720
   80 CONTINUE
                                                                            19730
                                                                            19740
      AR(1,L)=ODO
      AR(2,L) = -THMIN(I)
                                                                            19750
   90 CONTINUE
                                                                            19760
      IF (IOPT(3).NE.6) GO TO 120
                                                                            19770
C
           ADD REACTION TO EQUILBRATE WITH MINERAL # 1.
                                                                            19780
      L=MAXT+1
                                                                            19790
                                                                            19800
      DO 100 I=1.MAXT
      AR(I,L)=ODO
                                                                            19810
  100 CONTINUE
                                                                            19820
                                                                            19830
      DO 110 I=1,NCOMPS
      J=LREAC(I)
                                                                             19840
                                                                            19850
      AR(J,L)=AR(J,L)-CREAC(I)
                                                                            19860
      AR(2,L)=AR(2,L)-CREAC(I)*THMEAN(I)
                                                                            19870
  110 CONTINUE
  120 CONTINUE
                                                                            19880
                                                                            19890
      RETURN
                                                                             19900
      END
      SUBROUTINE KTEMP
                                                                             19910
$INSERT COMMON.BLOCKS
                                                                             19920
                                                                            19930
      DATA C/2.302585092/,R/1.98719D-3/
C
                                                                             19940
C
           COMPUTE TEMPERATURE DEPENDENCE OF A AND B FOR DEBYE-HUCKEL
                                                                             19950
C
                                                                             19960
      S1=374.11-TC
                                                                             19970
      S2=S1**0.33333333
                                                                             19980
      S3=1.0+0.1342489*S2-3.946263E-03*S1
                                                                             19990
      $3=$3/(3.1975-0.3151548*$2-1.203374E-03*$1+7.48908E-13*$1**4.0)
                                                                            20000
      S3=DSQRT(S3)
                                                                            20010
      IF (TK.LT.373.15) GO TO 10
                                                                            20020
                                                                            20030
      C1=5321.0/TK+233.76-TK*(TK*(8.292E-07*TK-1.417E-03)+0.9297)
      GO TO 20
                                                                            20040
   10 C1=87.74-TC*(TC*(1.41E-06*TC-9.398E-04)+0.4008)
                                                                            20050
                                                                            20060
   20 CONTINUE
      C1=DSQRT(C1*TK)
                                                                            20070
      A=1824600.0*S3/C1**3.0
                                                                            20080
      B=50.29*S3/C1
                                                                            20090
C
                                                                            20100
CC
           COMPUTE VANT HOFF CONSTANTS
                                                                            20110
                                                                            20120
      C1=(298.15-TK)/(298.15*TK*C*R)
                                                                            20130
      DO 30 I=1,LASTS
                                                                            20140
```

```
20150
      IF (SFLAG(I).EQ.0) GO TO 30
      IF (KFLAG(I).EQ.1) LKSP(I)=ASP(I,1)+ASP(I,2)*TK+ASP(I,3)/TK+ASP(I,20160)
     14)*DLOG10(TK)+ASP(I,5)/TK**2D0
      IF (KFLAG(I).EQ.O) LKSP(I)=LKTOSP(I)-DHSP(I)*C1
                                                                           20180
   30 CONTINUE
                                                                           20190
      IF (NLOOKS.EQ.O) GO TO 50
                                                                           20200
      DO 40 I=1, NLOOKS
                                                                           20210
      IF (LOOKFL(I).EQ.O) LKLOOK(I)=LKOLK(I)-DHLOOK(I)*C1
                                                                           20220
      IF (LOOKFL(I).EQ.1) LKLOOK(I)=ALOOK(I,1)+ALOOK(I,2)*TK+ALOOK(I,3)/20230
     1TK+ALOOK(I.4)*DLOG1O(TK)+ALOOK(I.5)/TK**2DO
                                                                           20240
   40 CONTINUE
                                                                           20250
                                                                           20260
   50 CONTINUE
      RETURN
                                                                           20270
      ****
                                                                           20280
C
                                                                           20290
      ENTRY KMINO
C
                                                                           20300
      IF (NMINS.EQ.O) GO TO 80
                                                                           20310
                                                                           20320
      DO 70 I=1, NMINS
      IF (MFLAG(I).EQ.O) LKMINO(I)=LKTOM(I)-DHMIN(I)*C1
                                                                           20330
      IF (MFLAG(I).EQ.1) LKMINO(I)=AMIN(I,1)+AMIN(I,2)*TK+AMIN(I,3)/TK+A 20340
     1MIN(I,4)*DLOG10(TK)+AMIN(I,5)/TK**2D0
                                                                           20350
C
           CONVERT K TO MASTER SPECIES
                                                                           20360
                                                                           20370
      LKMIN(I)=LKMINO(I)+SIMIN(I)
      IF (NMCON(I).EQ.O) GO TO 70
                                                                           20380
                                                                           20390
      K=NMCON(I)
                                                                           20400
      DO 60 J=1.K
      LKMIN(I)=CMCON(I,J)*LKSP(LMCON(I,J))+LKMIN(I)
                                                                           20410
   60 CONTINUE
                                                                           20420
   70 CONTINUE
                                                                           20430
                                                                            20440
   80 CONTINUE
                                                                           20450
      RETURN
                                                                            20460
      END
      SUBROUTINE MINCON
                                                                            20470
$INSERT COMMON.BLOCKS
                                                                            20480
C
           LOOP ON NUMBER OF MINERALS
                                                                            20490
      DO 100 I=1, NRMINS
                                                                            20500
                                                                            20510
      K=NMINO(I)
      ICOMP=0
                                                                            20520
      NONMAS=0
                                                                            20530
C
           LOOP ON INDIVIDUAL MINERAL
                                                                            20540
      DO 90 J=1,K
                                                                            20550
      IF (LMINO(I,J).GT.MAXT) GO TO 40
                                                                           20560
      IF (ICOMP.EQ.O) GO TO 20
                                                                           20570
C
           CHECK TO SEE IF COMPONENT IS ALREADY IN LIST
                                                                           20580
      DO 10 I1=1, ICOMP
                                                                           20590
      IF (LMIN(I,I1).EQ.LMINO(I,J)) GO TO 30
                                                                            20600
   10 CONTINUE
                                                                            20610
   20 CONTINUE
                                                                            20620
C
           COMPONENT NOT IN LIST
                                                                            20630
      ICOMP=ICOMP+1
                                                                            20640
                                                                            20650
      LMIN(I,ICOMP)=LMINO(I,J)
      CMIN(I,ICOMP)=CMINO(I,J)
                                                                            20660
                                                                            20670
      GO TO 90
C
          COMPONENT ALREADY IN LIST
                                                                            20680
   30 CONTINUE
                                                                            20690
      CMIN(I,I1)=CMIN(I,I1)+CMINO(I,J)
                                                                            20700
```

```
20710
      GO TO 90
C
                                                                            20720
           COMPONENT MUST BE REDUCED TO MASTER SPECIES
   40 CONTINUE
                                                                            20730
                                                                            20740
      J1=LMINO(I,J)
      K1=NSP(J1)
                                                                            20750
      NONMAS=NONMAS+1
                                                                            20760
                                                                            20770
      LMCON(I, NONMAS)=J1
                                                                            20780
      CMCON(I,NONMAS) = -CMINO(I,J)
C
           LOOP THROUGH MASTER SPECIES OF NON-MASTER SPECIES COMPONENT
                                                                            20790
                                                                            20800
      DO 80 I1=1.K1
      IF (ICOMP.EQ.O) GO TO 60
                                                                            20810
      DO 50 L1=1.ICOMP
                                                                            20820
      IF (LSP(J1, I1), EQ, LMIN(I, L1)) GO TO 70
                                                                            20830
   50 CONTINUE
                                                                            20840
                                                                            20850
           MASTER SPECIES NOT IN LIST
   60 CONTINUE
                                                                            20860
                                                                            20870
      ICOMP=ICOMP+1
                                                                            20880
      LMIN(I,ICOMP)=LSP(J1,I1)
      CMIN(I,ICOMP)=CMINO(I,J)*CSP(J1,I1)
                                                                            20890
                                                                            20900
      GO TO 80
C
           MASTER SPECIES IN LIST
                                                                            20910
   70 CONTINUE
                                                                            20920
      CMIN(I,L1)=CMIN(I,L1)+CMINO(I,J)*CSP(J1,I1)
                                                                            20930
   80 CONTINUE
                                                                            20940
C
           END LOOP MASTER SPECIES OF NON MASTER SPECIES COMPONENT
                                                                             20950
   90 CONTINUE
                                                                             20960
      NMIN(I)=ICOMP
                                                                            20970
      NMCON(I)=NONMAS
                                                                             20980
C
           END LOOP ON SINGLE MINERAL
                                                                            20990
                                                                             21000
  100 CONTINUE
           END ALL MINERALS
                                                                             21010
      RETURN
                                                                             21020
      END
                                                                             21030
                                                                             21040
      SUBROUTINE PICK1
$INSERT COMMON.BLOCKS
                                                                             21050
                                                                             21060
C
           THIS SUBROUTINE CHOOSES THE MODEL FOR THE INITIAL SOLUTIONS
                                                                             21070
C
                                                                             21080
      DZOFF=ODO
                                                                             21090
      IIN(1)=1
                                                                             21100
      IIN(2)=0
                                                                             21110
      IIN(3)=0
                                                                             21120
      NMINS=0
                                                                             21130
      IFE=1
                                                                             21140
      ILE=1
                                                                             21150
      IF (IESPEC.EQ.1) GO TO 10
                                                                             21160
      IIN(1)=0
                                                                             21170
      IFE=0
                                                                             21180
      ILE=0
                                                                             21190
   10 CONTINUE
                                                                             21200
C
           CHECK ALKALINITY TOTAL
                                                                             21210
      DALKT=ODO
                                                                             21220
      IASPEC=IALK(ISOL)
                                                                             21230
                                                                             21240
      IF (IASPEC.EQ.O) GO TO 30
      IF (TOTAL(ISOL, IASPEC).GT.ODO) GO TO 20
                                                                             21250
      WRITE (6,140)
                                                                             21260
```

```
ENDFILE (UNIT=6)
                                                                            21270
                                                                            21280
      STOP 'ERROR IN ALKALINITY OPTIONS'
                                                                            21290
   20 CONTINUE
      DALKT=TOTAL(ISOL, IASPEC)
                                                                            21300
      IF (IESPEC.EQ.O.OR.IESPEC.NE.IASPEC) GO TO 30
                                                                            21310
      WRITE (6.150)
                                                                            21320
      ENDFILE (UNIT=6)
                                                                            21330
                                                                            21340
      STOP 'ERROR IN ALKALINITY/NEUTRAL OPTIONS'
                                                                            21350
   30 CONTINUE
                                                                            21360
      IF (IOPT(2).EQ.1.AND.IASPEC.GT.O) THEN
         WRITE(6,146)
                                                                            21370
  146
         FORMAT(' CAN NOT ADJUST PH AND ALKALINITY SIMULTANEOUSLY')
                                                                            21380
                                                                            21390
         ENDFILE (UNIT=6)
         STOP 'ERROR IN ALKALINITY/ELECTRICAL BALANCE OPTIONS'
                                                                            21400
                                                                            21410
      END IF
                                                                            21420
      DNEUT=0.0D0
                                                                            21430
      IF (IESPEC.LT.4) GO TO 40
C
           MAKE SURE NEUTRAL SPECIES .GT. O
                                                                            21440
      DNEUT=TOT(IESPEC)
                                                                            21450
      IF (TOT(IESPEC).LE.ODO) TOT(IESPEC)=1D-3
                                                                            21460
   40 CONTINUE
                                                                            21470
      CALL INOUT
                                                                            21480
C
           SET COUNTERS ON THE ARRAY
                                                                            21490
      IFTH=0
                                                                            21500
      ILTH=0
                                                                            21510
      IFT=ILE+1
                                                                            21520
                                                                            21530
      ILT=ILT
      IFM=0
                                                                            21540
      ILM=0
                                                                            21550
      NEO=ILT
                                                                            21560
      NEQ1=NEO+1
                                                                            21570
      RETURN
                                                                            21580
      ****
C
                                                                            21590
      ENTRY PICK2
                                                                            21600
C
      ****
                                                                            21610
C
                                                                            21620
C
           THIS SUBROUTINE CHOOSES THE MODEL FOR THE REACTION SOLUTIONS
                                                                            21630
C
                                                                            21640
      IIN(1)=1
                                                                            21650
      IIN(2)=0
                                                                            21660
      IF (IOPT(5).GT.0) IIN(2)=1
                                                                            21670
                                                                            21680
      IIN(3)=1
      IESPEC=1
                                                                            21690
      IASPEC=0
                                                                            21700
      NMINS=NRMINS
                                                                            21710
           ADD IN ANY MINERALS NOT INCLUDED IN TOTALS
C
                                                                            21720
      IF (NMINS.EQ.O) GO TO 110
                                                                            21730
      TOT(3) = 1D0
                                                                            21740
      ICK=0
                                                                            21750
      DO 50 I=1,NMINS
                                                                            21760
      TOT(MAXT+I) = ODO
                                                                            21770
   50 CONTINUE
                                                                            21780
                                                                            21790
   55 CONTINUE
C
           CHECK TO MAKE SURE NECESSARY TOTALS > 0.
                                                                            21800
                                                                            21810
      JCK=0
      ICK=ICK+1
                                                                            21820
```

```
21830
      DO 70 I=1, NMINS
      IF (IOPT(3).EQ.6.AND.I.EQ.1) GO TO 70
                                                                            21840
                                                                            21850
      K=NMIN(I)
C
                                                                            21860
           IF TOTALS > 0 NEXT MINERAL
                                                                            21870
      DO 60 J=1.K
      IF (LMIN(I,J).LT.4) GO TO 60
                                                                            21880
                                                                            21890
      IF(TOT(LMIN(I,J)).GT.ODO) GO TO 60
                                                                            21900
      GO TO 65
   60 CONTINUE
                                                                            21910
                                                                            21920
      GO TO 70
   65 CONTINUE
                                                                            21930
           SOME TOTAL <= 0. IF ALL CMIN > 0 ADD MINERAL.
C
                                                                            21940
      DO 75 J=1.K
                                                                            21950
      IF (LMIN(I,J).LT.4) GO TO 75
                                                                            21960
      IF (CMIN(I,J).GT.0) GO TO 75
                                                                            21970
                                                                            21980
      GO TO 85
   75 CONTINUE
                                                                            21990
      D = 1D - 6
                                                                            22000
C
           ADD D OF MINERAL # I.
                                                                            22010
   95 CONTINUE
                                                                            22020
      TOT(MAXT+I)=D
                                                                            22030
      THOR=THOR+THMIN(I)*D
                                                                            22040
                                                                            22050
      DO 105 J=1,K
                                                                            22060
      K1=LMIN(I,J)
      IF(K1.LT.4)GO TO 105
                                                                            22070
      TOT(K1) = TOT(K1) + D*CMIN(I.J)
                                                                            22080
                                                                            22090
  105 CONTINUE
                                                                            22100
      GO TO 70
C
           SOME TOTAL <= 0. CHECK IF TOTALS <= 0 HAVE SAME SIGN FOR CMI 22110
   85 CONTINUE
                                                                            22120
                                                                            22130
      NCNEG=0
      NCPOS=0
                                                                            22140
                                                                            22150
      D=1D1
      DO 115 J=1,K
                                                                            22160
      K1=LMIN(I,J)
                                                                            22170
      D1=TOT(K1)
                                                                            22180
      IF (D1.LE.ODO) GO TO 125
                                                                            22190
                                                                            22200
      IF (D1.LT.D) D=D1
                                                                            22210
      GO TO 115
                                                                            22220
  125 CONTINUE
      IF(CMIN(I,J).LE.ODO) NCNEG=1
                                                                            22230
      IF(CMIN(I,J).GT.ODO) NCPOS=1
                                                                            22240
                                                                            22250
  115 CONTINUE
                                                                            22260
      IF(NCNEG.GT.O.AND.NCPOS.GT.O) GO TO 135
                                                                            22270
      D=D/5D1
                                                                            22280
      IF(NCNEG.EQ.1) D=-D
                                                                            22290
      GO TO 95
  135 CONTINUE
                                                                            22300
                                                                            22310
      JCK=1
                                                                            22320
   70 CONTINUE
      IF(JCK.EQ.0) GO TO 145
                                                                            22330
      IF(ICK.LE.NMINS+1) GO TO 55
                                                                            22340
                                                                            22350
      WRITE (6,155)
  155 FORMAT(1H1,90('*')/'I HAD TROUBLE ADDING MINERALS SO THAT',
                                                                            22360
             ' ALL THE NECESSARY ELEMENTS HAD POSITIVE CONCENTRATIONS.'/
                                                                            22370
     1
     2
             'PLEASE ADJUST INITIAL CONCENTRATIONS TO SOME SMALL ',
                                                                            22380
```

```
'POSITIVE QUANTITY.'/90('*'))
                                                                            22390
                                                                            22400
      ENDFILE (UNIT=6)
      STOP
                                                                            22410
  145 CONTINUE
                                                                            22420
           ADD ANY REACTION ELEMENTS IF IOPT(3)=6.
                                                                            22430
      IF (IOPT(3).NE.6) GO TO 100
                                                                            22440
                                                                            22450
      DO 90 I=1.NCOMPS
      IF (TOT(LREAC(I)).GT.ODO) GO TO 90
                                                                            22460
      D=DSIGN(1D-6, CREAC(I))
                                                                            22470
                                                                            22480
      TOT(MAXT1)=D
                                                                            22490
      DO 80 J=1.NCOMPS
      THOR=THOR+CREAC(J)*THMEAN(J)*D
                                                                            22500
      TOT(LREAC(J))=TOT(LREAC(J))+CREAC(J)*D
                                                                            22510
   80 CONTINUE
                                                                            22520
      GO TO 100
                                                                            22530
   90 CONTINUE
                                                                             22540
  100 CONTINUE
                                                                            22550
      TOT(1)=1D1**(-PH)
                                                                            22560
      TOT(2) = 1D1**(-PE)
                                                                            22570
      TOT(3) = 1D0
                                                                            22580
  110 CONTINUE
                                                                             22590
      CALL INOUT
                                                                            22600
C
           SET COUNTERS FOR ARRAY
                                                                            22610
      IFE=1
                                                                             22620
      ILE=1
                                                                             22630
      LAST = 1
                                                                            22640
      IFTH=0
                                                                             22650
      ILTH=0
                                                                             22660
      IF (IIN(2).LE.0) GO TO 120
                                                                            22670
                                                                            22680
      IFTH=2
      ILTH=2
                                                                             22690
                                                                             22700
      LAST=2
  120 CONTINUE
                                                                             22710
      LAST=LAST+1
                                                                             22720
C
           THIS IS FOR H20 EQUATION.
                                                                             22730
      IFT=LAST+1
                                                                             22740
      ILT=ILT
                                                                             22750
      IFM=0
                                                                             22760
      ILM=0
                                                                            22770
      NEO=ILT
                                                                             22780
      IF (NMINS.EQ.0) GO TO 130
                                                                             22790
      IFM=ILT+1
                                                                            22800
      ILM=ILT+NMINS
                                                                             22810
      NEQ=ILM
                                                                             22820
  130 CONTINUE
                                                                             22830
      NEQ1=NEQ+1
                                                                             22840
      RETURN
                                                                             22850
C
                                                                             22860
  140 FORMAT (1X, CARBON WAS SPECIFIED AS ALKALINITY BUT WAS LESS ', 'THA 22870
     1N OR EQUAL 0.0.'/1X,'CALCULATIONS TERMINATED')
                                                                             22880
  150 FORMAT (1X, 'ALKALINITY SPECIES CAN NOT BE THE SAME AS THE ', 'NEUTR 22890
     1AL SPECIES'/1X, 'CALCULATIONS TERMINATED')
                                                                             22900
      END
                                                                             22910
      SUBROUTINE STEP
                                                                             22920
$INSERT COMMON.BLOCKS
                                                                             22930
      LOGICAL EVAP
                                                                             22940
```

		COMMON /EVAP/ EVAP	22950
		IF (IOPT(3).EQ.0) GO TO 120	22960
		I=IOPT(3)	22970
		WRITE (6,140) ISTEP	22980
		GO TO (10,30,50,60,100,100), I	22990
_		GO TO 100	23000
С		MIX SOLUTION 1 WITH SOLUTION 2	23010
	10	CONTINUE	23020
		X1=XSTEP(ISTEP)	23030
		X2=1.0-X1	23040
		DO 15 I=1,3	23050
		TOT(I)=(TOTAL(1,I)*TOTAL(2,I))**0.5	23060
	45	CONTINUE	23070
	15		
		DO 20 I=4,MAXT	23080
		TOT(I) = X1*TOTAL(1,I) + X2*TOTAL(2,I)	23090
	20	CONTINUE	23100
		THOR=TH(1)*X1+TH(2)*X2	23110
		TC=X1*TEMP(1)+X2*TEMP(2)	23120
		DZOFF=X1*DIFFZ(1)+X2*DIFFZ(2)	23130
		WRITE (6, 150) X1, X2	23140
		GO TO 120	23150
•			-
С		TITRATE	23160
	30	CONTINUE	23170
		X1=XSTEP(ISTEP)	23180
		VTOT=VO+X1	23190
		DO 40 I=1, MAXT	23200
		TOT(I)=(TOTAL(1,I)*VO+TOTAL(2,I)*X1)/VTOT	23210
	110	CONTINUE	23220
	70	TC=(TEMP(1)*VO+TEMP(2)*X1)/VTOT	23230
			23240
		THOR=(TH(1)*V0+TH(2)*X1)/VTOT	_
		DZOFF=(DIFFZ(1)*VO+DIFFZ(2)*X1)/VTOT	23250
		WRITE (6, 160) X1	23260
		GO TO 120	23270
С		ADD REACTION IN INCREMENTS	23280
	50	CONTINUE	23290
		X1=XSTEP(ISTEP)	23300
		GO TO 70	23310
С		ADD REACTION LINEARLY	23320
C	60	CONTINUE	23330
	00		
		X1=(ISTEP*XSTEP(1))/NSTEPS	23340
	70	CONTINUE	23350
		DZOFF=DIFFZ(1)	23360
		DO 80 I=1,MAXT	2 337 0
		TOT(I)=TOTAL(1,I)	23380
	80	CONTINUE	23390
		DO 90 I=1,NCOMPS	23400
		K=LREAC(I)	23410
		· · ·	23420
		IF (K.EQ.O) DZOFF=DIFFZ(1)+X1*CREAC(I)	-
		IF (K.LT.4.OR.K.GT.MAXT) GO TO 90	23430
		TOT(K)=TOT(K)+X1*CREAC(I)	23440
	90	CONTINUE	23450
		THOR=TH(1)+THREAC*X1	23460
		TC=TEMP(1)	23470
		IF (ISTEP.GT.1) TOT(1)=1D1**LA(1)	23480
		WRITE (6,170) X1	23490
		CALL PREAC	23500
		UNDE L'ABRO	٥٥٥٥

```
GO TO 120
                                                                            23510
C
           FOLLOW PHASE BOUNDARIES ONLY
                                                                            23520
  100 CONTINUE
                                                                            23530
C
                                                                            23540
C
              SPECIAL CASE OF EVAPORATION
                                                                            23550
C
                                                                            23560
      IF (EVAP) THEN
                                                                            23570
         NCOMPS=0
                                                                            23580
         THREAC=ODO
                                                                            23590
         DO 115 I=4,29
                                                                            23600
         IF (TOTAL(1,I).GT.O.ODO) THEN
                                                                            23610
            NCOMPS=NCOMPS+1
                                                                            23620
                                                                            23630
            LREAC(NCOMPS)=I
            CREAC(NCOMPS) = TOTAL(1, I)
                                                                            23640
C
              EVAPORATION DOES NOT CONSIDER REDOX
                                                                            23650
            THMEAN(I)=ODO
                                                                            23660
         END IF
                                                                            23670
         CONTINUE
                                                                            23680
  115
      END IF
                                                                            23690
      DO 110 I=1, MAXT
                                                                            23700
      TOT(I) = TOTAL(1,I)
                                                                            23710
  110 CONTINUE
                                                                            23720
      THOR=TH(1)
                                                                            23730
      TC=TEMP(1)
                                                                            23740
      DZOFF=DIFFZ(1)
                                                                            23750
      WRITE (6, 180)
                                                                            23760
  120 CONTINUE
                                                                            23770
                                                                            23780
           TEMPERATURE
      IF (IOPT(4).EQ.0) GO TO 130
                                                                            23790
      IF (IOPT(4).EQ.1) TC=TSTEP(1)
                                                                            23800
      IF (IOPT(4).EQ.2) TC=(ISTEP*(TSTEP(2)-TSTEP(1)))/NSTEPS+TSTEP(1)
                                                                            23810
      IF (IOPT(4).EQ.3) TC=TSTEP(ISTEP)
                                                                            23820
                                                                            23830
      WRITE (6,190) TC
  130 CONTINUE
                                                                            23840
      TK = TC + 273.15
                                                                            23850
      RETURN
                                                                            23860
C
                                                                            23870
  140 FORMAT (/1H1, 'STEP NUMBER', I3, /1H0, 14('-'))
                                                                            23880
  150 FORMAT (1HO,F10.3,' = FRACTION OF SOLUTION 1.',3X,F10.3,' = FR',
                                                                            23890
     1'ACTION OF SOLUTION 2.'//)
                                                                            23900
  160 FORMAT (1HO, F10.3, ' VOLUME UNITS OF SOLUTION 2 HAVE BEEN ',
                                                                            23910
     1'ADDED.'//)
                                                                            23920
  170 FORMAT (1HO, 1PD10.3, ' MOLES OF REACTION HAVE BEEN ADDED.'//)
                                                                            23930
  180 FORMAT (//)
                                                                            23940
  190 FORMAT (23X,F10.2,' = NEW TEMPERATURE (C).'//)
                                                                            23950
      END
                                                                            23960
                                                                            23970
      SUBROUTINE THORIT(T)
                                                                            23980
$INSERT COMMON.BLOCKS
                                                                            23990
      T=0.0D0
      DALKS=ODO
                                                                            24000
      DO 10 I=1,LASTS
                                                                            24010
      IF (SFLAG(I).EQ.0) GO TO 10
                                                                            24020
      DALKS=DALKS+M(I)*ALKSP(I)
                                                                            24030
      T=T+M(I)*THSP(I)
                                                                            24040
   10 CONTINUE
                                                                            24050
                                                                            24060
      RETURN
```

```
C
      ****
                                                                             24070
      ENTRY SOLN(J1)
                                                                             24080
C
      ****
                                                                             24090
                                                                             24100
      WRITE (6,260) J1, (HEAD(J1,I),I=1,20)
      DO 20 I=1.MAXT
                                                                             24110
                                                                             24120
      TOT(I) = TOTAL(J1,I)
                                                                             24130
   20 CONTINUE
                                                                             24140
      THOR=0.0D0
      TC=TEMP(J1)
                                                                             24150
                                                                             24160
      TK=TC+273.15
      IF (DABS(TC-25.0).GT.30.0) WRITE (6,265)
                                                                             24170
                                                                             24180
      PH=-DLOG10(TOT(1))
                                                                             24190
      PE=-DLOG10(TOT(2))
                                                                             24200
      RETURN
C
      ****
                                                                             24210
                                                                             24220
      ENTRY SAVE
      ****
                                                                             24230
C
                                                                             24240
      IF (IOPT(7).EQ.0) RETURN
                                                                             24250
      K=IOPT(7)
                                                                             24260
      DO 30 I=1.MAXT
                                                                             24270
      TOTAL(K,I)=TOT(I)
                                                                             24280
   30 CONTINUE
                                                                             24290
      TEMP(K)=TC
      TH(K) = THOR
                                                                             24300
                                                                             24310
      DIFFZ(K)=DZOFF
      RETURN
                                                                             24320
      *****
                                                                             24330
C
      ENTRY CHKSPE (IERR1)
                                                                             24340
C
      ****
                                                                             24350
            CHECK MASTER SPECIES IN AQUEOUS SPECIES
                                                                             24360
C
                                                                             24370
      DO 80 I=1.MAXS
                                                                             24380
      IF (NSP(I).LE.0) GO TO 80
                                                                             24390
      K=NSP(I)
      DO 70 J=1.K
                                                                             24400
                                                                             24410
      L=LSP(I,J)
                                                                             24420
      IF (L.GE.1.AND.L.LE.MAXT) GO TO 70
                                                                             24430
      WRITE (6.270) I.SNAME(I)
                                                                             24440
      IERR1=1
   70 CONTINUE
                                                                             24450
                                                                             24460
   80 CONTINUE
                                                                             24470
C
            CHECK SPECIES
                                                                             24480
      DO 100 I=MAXT1, MAXS
                                                                             24490
      K=NSP(I)
      IF (K.EQ.O) GO TO 100
                                                                             24500
      Z=0.0D0
                                                                             24510
                                                                             24520
      DO 90 J=1.K
                                                                             24530
      Z=Z+ZSP(LSP(I,J))*CSP(I,J)
                                                                             24540
   90 CONTINUE
       IF (DABS(ZSP(I)-Z).LT.1D-5) GO TO 100
                                                                             24550
                                                                             24560
       IERR1=1
                                                                             24570
      WRITE (6,280) I, SNAME(I)
                                                                             24580
  100 CONTINUE
      RETURN
                                                                             24590
C
       ****
                                                                             24600
                                                                             24610
      ENTRY CHKMIN (IERR2)
       ****
                                                                             24620
C
```

_		CUROV WINDS A ROD CHADGE AND WALDING	011600
С		CHECK MINERALS FOR CHARGE AND VALENCE	24630
		IF (NRMINS.EQ.O) GO TO 140	24640
		THSP(2) = -1D0	24650
		DO 130 I=1,NRMINS	24660
		K=NMINO(I)	24670
		Z=0.0D0	24680
		THR=0.0D0	24690
		DO 110 J=1,K	24700
		Z=Z+ZSP(LMINO(I,J))*CMINO(I,J)	24710
		THR=THR+THSP(LMINO(I,J))*CMINO(I,J)	24720
	110	CONTINUE	24730
	110	IF (DABS(Z),LT.1D-5) GO TO 120	24740
		IERR2=2	24750
			24760
	400	WRITE (6,290) I,MNAME(I)	
	120	CONTINUE	24770
		IF (DABS(THR-THMIN(I)).LT.1D-5) GO TO 130	24780
		IERR2=3	24790
		WRITE (6,300) I,MNAME(I)	24800
	130	CONTINUE	24810
		THSP(2)=ODO	24820
	140	CONTINUE	24830
		RETURN	24840
С		****	24850
		ENTRY CHKLK	24860
С		****	24870
Č		CHECK LOOK MINERALS	24880
Ū		IF (NLOOKS.EQ.O) GO TO 170	24890
		DO 160 I=1,NLOOKS	24900
		K=NLOOK(I)	24910
		Z=0.0D0	24920
		DO 150 J=1,K	24930
		Z=Z+ZSP(LLOOK(I,J))*CLOOK(I,J)	24940
	150	CONTINUE	24950
	150	IF (DABS(Z).LT.1D-5) GO TO 160	24960
			24900
	160	WRITE (6,310) I,NAMELK(I)	24970
		CONTINUE	-
	170	CONTINUE	24990
_		RETURN	25000
C			25010
		ENTRY UNITS(ISOLN)	25020
C		*****	25030
		IASPEC=IALK(ISOLN)	25040
		IF (IUNITS(ISOLN).EQ.0) GO TO 250	25050
		IF (IUNITS(ISOLN).NE.1) GO TO 190	25060
C		MMOLES/L	25070
		DO 180 I=4, MAXT	25080
		TOTAL(ISOLN,I)=TOTAL(ISOLN,I)*GFW(I)	25090
	180	CONTINUE	25100
		IUNITS(ISOLN)=2	25110
	190	CONTINUE	25120
	•	IF (IUNITS(ISOLN).NE.2) GO TO 210	25130
С		MG/L	25140
•		DO 200 I=4, MAXT	25150
		TOTAL(ISOLN, I)=TOTAL(ISOLN, I)/SDENS(ISOLN)	25160
	200	CONTINUE	25170
	200	IUNITS(ISOLN)=3	25180
		TOMITIO(IDOUM)=0	23100

```
25190
  210 CONTINUE
      IF (IUNITS(ISOLN).NE.3) GO TO 256
                                                                           25200
C
                                                                           25210
                                                                            25220
      TOTMG=0.0D0
      DO 220 I=4.MAXT
                                                                           25230
                                                                           25240
      TOTMG=TOTMG+TOTAL(ISOLN, I)
                                                                           25250
  220 CONTINUE
      C=1.0-TOTMG#1E-06
                                                                            25260
      IF (C.GT.O.O) GO TO 230
                                                                            25270
                                                                            25280
      WRITE (6,320)
      ENDFILE (UNIT=6)
                                                                            25290
      STOP
                                                                            25300
  230 CONTINUE
                                                                            25310
      C=1.0/(C*1E+03)
                                                                            25320
                                                                            25330
      DO 240 I=4, MAXT
      IF (TOTAL(ISOLN, I).LE.O.ODO) GO TO 240
                                                                           25340
      TOTAL(ISOLN, I) = C*TOTAL(ISOLN, I) / GFW(I)
                                                                            25350
  240 CONTINUE
                                                                           25360
      GO TO 250
                                                                            25370
                                                                            25380
  256 CONTINUE
      IF(IUNITS(ISOLN).NE.4) GO TO 400
                                                                            25390
C
      MMOL/KG SOLN
                                                                            25400
                                                                            25410
      DO 257 I=4.MAXT
                                                                            25420
      IF(TOTAL(ISOLN,I).LE.O.ODO) GO TO 257
      TOTAL(ISOLN, I) = TOTAL(ISOLN, I)*GFW(I)
                                                                            25430
                                                                            25440
  257 CONTINUE
      NOW IN PPM
                                                                            25450
                                                                            25460
      IUNITS(ISOLN)=3
                                                                            25470
      GO TO 210
  400 WRITE(6,410)
                                                                            25480
      ENDFILE (UNIT=6)
                                                                            25490
      STOP
                                                                            25500
  250 CONTINUE
                                                                            25510
C
           UNITS ARE NOW MOLALITY
                                                                            25520
      RETURN
                                                                            25530
C
                                                                            25540
  260 FORMAT (1H1, 'SOLUTION NUMBER ', I1, /, 1X, 20A4/)
                                                                            25550
  265 FORMAT (/' WARNING -- TEMPERATURE IS MORE THAN 30 DEGREES FROM '
                                                                            25560
     1. THE REFERENCE'./.12X. TEMPERATURE (25C); LARGE ERRORS IN '
                                                                            25570
     2, PITZER PARAMETERS', /, 12X, 'CAN BE EXPECTED IN THE CALCULATIONS '
                                                                            25580
     3, 'THAT FOLLOW.'./)
                                                                            25590
  270 FORMAT (1X,14,2X,A8,5X,'SPECIES HAS A MASTER SPECIES NUMBER OUT OF 25600
              RANGE')
  280 FORMAT (1H .'***** ERROR IN SPECIES NUMBER', I4.' '.A8, 'REACTION D 25620
     10ES NOT CHARGE BALANCE.')
                                                                            25630
  290 FORMAT (1H ,'**** ERROR IN MINERAL NUMBER',14,2X,A8,' REACTION DO 25640
     1ES NOT CHARGE BALANCE.')
                                                                            25650
  300 FORMAT (1H ,'**** ERROR IN MINERAL NUMBER', 14,2X, A8,' REACTION',
                                                                            25660
     1/,7X,'DOES NOT BALANCE THE SPECIFIED VALENCE.')
  310 FORMAT (1H ,'**** WARNING: LOOK MINERAL NUMBER'.14,2X,A8.' REACT 25680
     110N',/,7X,'DOES NOT CHARGE BALANCE.')
                                                                            25690
  320 FORMAT (1H1.80('*')//'TERMINAL ERROR'/'TOTAL SALT PPM GREATER '.'T 25700
     1HAN 1 MILLION.'/'CHECK CONCENTRATION UNITS AND ELEMENT',' GRAM FOR 25710
     2MULA WEIGHT INPUT',//,1X,80('*'))
                                                                            25720
  410 FORMAT(///,10X,'*** TERMINAL ERROR **** UNITS OF CONCENTRATION UNK 25730
     1NOWN',///)
                                                                            25740
```

```
END
                                                                            25750
                                                                            25760
      SUBROUTINE ZEROAR
                                                                            25770
$INSERT COMMON.BLOCKS
                                                                            25780
      DO 60 I = 1.30
                                                                            25790
      DO 40 J=1,30
                                                                            25800
                                                                            25810
      AR(I,J)=0.0D0
                                                                            25820
   40 CONTINUE
                                                                            25830
   60 CONTINUE
      RETURN
                                                                            25840
      END
                                                                            25850
C
                                                                            25860
                                                                            25870
      SUBROUTINE PITZER (MO.LG.AW.MU.ICON)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                            25880
      CHARACTER *8 SPECS(40).NEUTRL(20)
                                                                            25890.
      INTEGER TRANS(40), IN(20)
                                                                            25900
      DOUBLE PRECISION MU,MO(250),LG(250),LAM(40,20),MN(20),LGN(20),I
                                                                            25910
     1,LGAMMA(40),Z(40),PSI(40,40,40),BCX(4,20,21:40),M(40)
                                                                            25920
      LOGICAL IPRSNT(40), LNEUT
                                                                            25930
      COMMON / MX2 / I,J,K
                                                                            25940
      COMMON / MX3 / BCX, OTEMP
                                                                            25950
      COMMON / MX4 / AO
                                                                            25960
      COMMON / MX5 / Z
                                                                            25970
      COMMON / MX6 / LAM, TRANS, PSI, IN
                                                                            25980
      COMMON / MXO / B
                                                                            25990
      COMMON / PI1C / SPECS, NEUTRL
                                                                            26000
      COMMON / PI1 / M1, M2, M3
                                                                            26010
      COMMON / COS / COSMOT
                                                                            26020
      DATA CONV / 0.4342944819D0 /
                                                                            26030
C
                                                                            26040
C
      THIS IS THE MAIN ROUTINE FOR CALCULATING GAMMAS USING HARVIE AND
                                                                            26050
C
      WEARE (1980) MODEL. VALUES OF CONCENTRATION ARE PASSED INTO
                                                                            26060
C
      SUBROUTINE PITZER VIA THE VARIABLE 'MO'. 'MO' CONTAINS MOLALITY
                                                                            26070
C
      OF SPECIES, NUMBERED BY PHREEQE'S CONVENTION. ONCE INSIDE PITZER, 26080
C
      VALUES OF CONCENTRATION OF SPECIES USED IN PITZER'S MODEL ARE
                                                                            26090
C
      TRANSFERED TO THE VARIABLES 'M' AND 'MN'. FOR A LIST OF SPECIES.
                                                                            26100
C
      SEE SPECIES INPUT IN 'PITZER.DATA'.
                                                                            26110
C
                                                                            26120
C
      THE VARIABLE 'M' CONTAINS CONCENTRATIONS OF IONIZED SPECIES:
                                                                            26130
С
                      M(1:20) \Rightarrow CATIONS
                                                                            26140
C
                      M(21:40) \Rightarrow ANIONS
                                                                            26150
C
      'MN' CONTAINS CONCENTRATION OF NEUTRAL SPECIES
                                                                            26160
C
                                                                            26170
C
      VARIABLES 'SPECIES' AND 'NEUT' CONTAIN NAMES OF IONIZED AND
                                                                            26180
C
      NEUTRAL SPECIES RESPECTIVELY, USING THE SAME NUMBERING SYSTEM AS
                                                                            26190
C
      'M' AND 'MN'.
                                                                            26200
C
                                                                            26210
C
      OTHER IMPORTANT VARIABLES:
                                                                            26220
С
            M1 => MAX INDEX # FOR CATIONS (<21)
                                                                            26230
C
            M2 => MAX INDEX # FOR ANIONS (20 < M2 < 41)
                                                                            26240
C
            M3 => MAX INDEX # FOR NEUTRALS (<21)
                                                                            26250
C
            IPRESENT, NEUTRAL => LOGICAL VARIABLE ARRAYS TO INDICATE
                                                                            26260
C
                                 WHICH SPECIES HAVE NON-ZERO
                                                                            26270
C
                                 CONCENTRATION.
                                                                            26280
C
            I => IONIC STRENGTH
                                                                            26290
            BCX(1,-,-) => BETA (0) | SECOND SUBSCRIPT IS FOR CATION
                                                                            26300
```

```
26310
C
             BCX(2,-,-) \Rightarrow BETA(1) \mid INDEX;
C
                                         THIRD SUBSCRIPT IS FOR ANION
                                                                             26320
            BCX(3,-,-) \Rightarrow BETA(2)
C
             BCX(4,-,-) \Rightarrow C PHI
                                   | INDEX.
                                                                             26330
C
            LAM => LAMBDA, IONIZED-NEUTRAL INTERACTION PARAMETER
                                                                             26340
C
            PSI => PSI, 1 CATION - 2 ANION INTERACTION OR 2 CATION -
                                                                             26350
C
                    1 ANION INTERACTION PARAMETER.
                                                                              26360
            CONV => CONVERSION FACTOR FROM LOG BASE E TO LOG BASE 10
C
                                                                              26370
C
            LGAMMA => LOG OF GAMMAS
                                                                              26380
C
            PHIMAC => CONVERSION FACTOR FOR MACINNES CONVENTION
                                                                              26390
C
            COSMOTIC => OSMOTIC COEFFICIENT
                                                                              26400
C
                                                                              26410
             AW => ACTIVITY OF WATER
C
            GAMCLM => LOG GAMMA OF KCL SYSTEM AT SAME IONIC STRENGTH
                                                                              26420
C
                       AND TEMPERATURE. USED BY 'PHIMAC'
                                                                              26430
C
                                                                              26440
             Z => CHANGE OF SPECIES
C
                                                                              26450
C
      EQUATION NUMBERS REFER TO HARVIE AND WEARE (1980)
                                                                             26460
C
                                                                              26470
C
      INITIALIZE
                                                                              26480
C
                                                                              26490
                                                                              26500
      XI = 0.0D0
                                                                              26510
      XX=0.0D0
                                                                              26520
      OSUM=0.0D0
      LNEUT = . FALSE .
                                                                              26530
C
                                                                              26540
C
      TRANSFER DATA FROM MO TO M
                                                                              26550
C
                                                                              26560
                                                                              26570
      DO 20 N=1,M2
      M(N)=0.0D0
                                                                              26580
      IF (N.GT.M1.AND.N.LT.21) GO TO 20
                                                                              26590
                                                                              26600
      M(N) = MO(TRANS(N))
                                                                              26610
   20 CONTINUE
                                                                              26620
      DO 30 N=1.M3
                                                                              26630
      MN(N) = MO(IN(N))
                                                                              26640
      IF (MN(N).GT.1.OD-40) LNEUT=.TRUE.
                                                                              26650
   30 CONTINUE
C
                                                                              26660
      DO 40 N=1,M2
                                                                              26670
      IF (M(N).GT.1.OD-40) GO TO 50
                                                                              26680
                                                                              26690
      IPRSNT(N)=.FALSE.
      GO TO 40
                                                                              26700
   50 IPRSNT(N)=.TRUE.
                                                                              26710
   40 CONTINUE
                                                                              26720
C
                                                                              26730
      COMPUTE PITZER COEFFICIENTS' TEMPERATURE DEPENDENCE
                                                                              26740
C
C
                                                                              26750
                                                                              26760
      CALL PTEMP
C
                                                                              26770
                                                                              26780
      DO 10 N=1,M2
      IF (.NOT.IPRSNT(N)) GO TO 10
                                                                              26790
                                                                              26800
      XX=XX+M(N)*DABS(Z(N))
                                                                              26810
      XI = XI + M(N) + Z(N) + Z(N)
      OSUM=OSUM+M(N)
                                                                              26820
                                                                              26830
    10 CONTINUE
                                                                              26840
      DO 15 N=1,M3
                                                                              26850
       OSUM=OSUM+MN(N)
                                                                              26860
    15 CONTINUE
```

```
26870
      I=XI/2.0D0
C
                                                                              26880
C
                                                                              26890
      EQUATION (8)
C
                                                                              26900
                                                                              26910
      BIGZ=XX
      DI=DSQRT(I)
                                                                              26920
C
                                                                              26930
C
      CALCULATE F & GAMCLM
                                                                              26940
                                                                              26950
      F = -AO^{*}(DI/(1.0D0+B^{*}DI)+2.0D0^{*}DLOG(1.0D0+B^{*}DI)/B)
                                                                              26960
      XXX=2.0D0*DI
                                                                              26970
      XXX = (1.0D0 - (1.0D0 + XXX - XXX + XXX + 0.5D0) + DEXP(-XXX))/(XXX + XXX)
                                                                              26980
      IK=ISPEC('K+
                          ')
                                                                              26990
                          1)
      IC=ISPEC('CL-
                                                                              27000
      GAMCLM=F+I*2.0D0*(BCX(1,IK,IC)+BCX(2,IK,IC)*XXX)+1.5D0
                                                                              27010
     1*BCX(4.IK.IC)*I*I
                                                                              27020
      DO 75 J=1,M1
                                                                              27030
      IF (.NOT.IPRSNT(J)) GO TO 75
                                                                              27040
      DO 70 K=21,M2
                                                                              27050
      IF (.NOT.IPRSNT(K)) GO TO 70
                                                                              27060
C
                                                                              27070
C
      EQUATION (3) PART 1
                                                                              27080
C
                                                                              27090
      F=F+M(J)*M(K)*BMXP()
                                                                              27100
   70 CONTINUE
                                                                              27110
   75 CONTINUE
                                                                              27120
      DO 85 J=1,M1-1
                                                                              27130
      IF (.NOT.IPRSNT(J)) GO TO 85
                                                                              27140
      DO 80 K=J+1.M1
                                                                              27150
      IF (.NOT.IPRSNT(K)) GO TO 80
                                                                              27160
C
                                                                              27170
C
      EQUATION (3) PART 2
                                                                              27180
                                                                              27190
      F=F+M(J)*M(K)*ETHEAP()
                                                                              27200
   80 CONTINUE
                                                                              27210
   85 CONTINUE
                                                                              27220
      DO 90 J=21,M2-1
                                                                              27230
      IF (.NOT.IPRSNT(J)) GO TO 90
                                                                              27240
      DO 110 K=J+1.M2
                                                                              27250
      IF (.NOT.IPRSNT(K)) GO TO 110
                                                                              27260
C
                                                                              27270
C
      EQUATION (3) PART 3
                                                                              27280
C
                                                                              27290
      F=F+M(J)*M(K)*ETHEAP()
                                                                              27300
  110 CONTINUE
                                                                              27310
   90 CONTINUE
                                                                              27320
C
                                                                              27330
      CSUM=0.0D0
                                                                              27340
      DO 125 J=1,M1
                                                                              27350
      IF (.NOT.IPRSNT(J)) GO TO 125
                                                                              27360
      DO 120 K=21,M2
                                                                              27370
      IF (.NOT.IPRSNT(K)) GO TO 120
                                                                              27380
C
                                                                              27390
C
      EQUATION (2B) PART 4
                                                                              27400
C
                                                                              27410
      CSUM=CSUM+M(J)*M(K)*CMX()
                                                                              27420
```

```
120 CONTINUE
                                                                            27430
  125 CONTINUE
                                                                            27440
C
                                                                            27450
C
      CALCULATE LGAMMA FOR CATIONS
                                                                            27460
C
                                                                            27470
      DO 130 J=1.M1
                                                                            27480
      LGAMMA(J)=Z(J)*Z(J)*F+DABS(Z(J))*CSUM
                                                                            27490
                                                                            27500
      DO 140 K=21.M2
      IF (.NOT.IPRSNT(K)) GO TO 140
                                                                            27510
C
                                                                            27520
С
      EQUATION (2B) PART 3
                                                                            27530
                                                                            27540
      LGAMMA(J)=LGAMMA(J)+M(K)*(2.0DO*BMX()+BIGZ*CMX())
                                                                            27550
  140 CONTINUE
                                                                            27560
      DO 150 K=1,M1
                                                                            27570
      IF (.NOT.IPRSNT(K)) GO TO 150
                                                                            27580
      LGAMMA(J)=LGAMMA(J)+2.0D0*M(K)*PHI()
                                                                            27590
      DO 160 KK=21.M2
                                                                            27600
      IF (.NOT.IPRSNT(KK)) GO TO 160
                                                                            27610
C
                                                                            27620
C
      EQUATION (2B) PART 2
                                                                            27630
                                                                            27640
      LGAMMA(J)=LGAMMA(J)+M(KK)*M(K)*PSI(J,K,KK)
                                                                            27650
  160 CONTINUE
                                                                            27660
  150 CONTINUE
                                                                            27670
      DO 170 K=21,M2-1
                                                                            27680
      IF (.NOT.IPRSNT(K)) GO TO 170
                                                                            27690
                                                                            27700
      DO 180 KK=K+1,M2
      IF (.NOT.IPRSNT(KK)) GO TO 180
                                                                            27710
C
                                                                            27720
C
      EQUATION (2B) PART 3
                                                                            27730
C
                                                                            27740
      LGAMMA(J)=LGAMMA(J)+M(K)*M(KK)*PSI(K,KK,J)
                                                                            27750
  180 CONTINUE
                                                                            27760
  170 CONTINUE
                                                                            27770
      IF (.NOT.LNEUT) GO TO 130
                                                                            27780
      DO 190 K=1.M3
                                                                            27790
      LGAMMA(J)=LGAMMA(J)+2.0D0*MN(K)*LAM(J,K)
                                                                            27800
  190 CONTINUE
                                                                            27810
  130 CONTINUE
                                                                            27820
C
                                                                            27830
C
      CALCULATE LGAMMA OF ANIONS
                                                                            27840
C
                                                                            27850
      DO 230 K=21,M2
                                                                            27860
C
                                                                            27870
C
      EQUATION (2C) PART 1
                                                                            27880
C
                                                                            27890
      LGAMMA(K)=Z(K)*Z(K)*F+DABS(Z(K))*CSUM
                                                                            27900
      DO 240 J=1.M1
                                                                            27910
      IF (.NOT.IPRSNT(J)) GO TO 240
                                                                            27920
C
                                                                            27930
C
      EQUATION (2C) PART 2
                                                                            27940
C
                                                                            27950
      LGAMMA(K)=LGAMMA(K)+M(J)*(2.0D0*BMX()+BIGZ*CMX())
                                                                            27960
  240 CONTINUE
                                                                            27970
      DO 250 J=21,M2
                                                                            27980
```

```
IF (.NOT.IPRSNT(J)) GO TO 250
                                                                            27990
      LGAMMA(K)=LGAMMA(K)+2.ODO*M(J)*PHI()
                                                                            28000
      DO 260 KK=1,M1
                                                                            28010
      IF (.NOT.IPRSNT(KK)) GO TO 260
                                                                            28020
C
                                                                            28030
C
      EQUATION (2C) PART 3
                                                                            28040
                                                                            28050
      LGAMMA(K)=LGAMMA(K)+M(KK)*M(J)*PSI(K,J,KK)
                                                                            28060
  260 CONTINUE
                                                                            28070
  250 CONTINUE
                                                                            28080
                                                                            28090
      DO 270 J=1,M1-1
      IF (.NOT.IPRSNT(J)) GO TO 270
                                                                            28100
                                                                            28110
      DO 280 KK=J+1,M1
      IF (.NOT.IPRSNT(KK)) GO TO 280
                                                                            28120
C
                                                                            28130
C
      EQUATION (2C) PART 4
                                                                            28140
                                                                            28150
                                                                            28160
      LGAMMA(K)=LGAMMA(K)+M(J)*M(KK)*PSI(J,KK,K)
  280 CONTINUE
                                                                            28170
  270 CONTINUE
                                                                            28180
      IF (.NOT.LNEUT) GO TO 230
                                                                            28190
      DO 290 J=1.M3
                                                                            28200
                                                                            28210
      LGAMMA(K)=LGAMMA(K)+2.0D0*MN(J)*LAM(K,J)
  290 CONTINUE
                                                                            28220
  230 CONTINUE
                                                                            28230
C
                                                                            28240
C
      CONVERT TO MACINNES CONVENTION
                                                                            28250
C
                                                                            28260
                                                                            28270
      IF (ICON.EQ.O) GO TO 300
      PHIMAC=GAMCLM-LGAMMA(IC)
                                                                            28280
      DO 220 K=1.M2
                                                                            28290
      IF (.NOT.IPRSNT(K)) GO TO 220
                                                                            28300
      LGAMMA(K)=LGAMMA(K)+Z(K)*PHIMAC
                                                                            28310
                                                                            28320
  220 CONTINUE
C
                                                                            28330
  300 IF (.NOT.LNEUT) GO TO 860
                                                                            28340
C
                                                                            28350
C
      CALCULATE THE GAMMA OF NEUTRAL IONS
                                                                            28360
C
                                                                            28370
                                                                            28380
      DO 800 K=1.M3
      LGN(K)=0.0D0
                                                                            28390
      DO 870 J=1.M2
                                                                            28400
      IF (.NOT.IPRSNT(J)) GO TO 870
                                                                            28410
      LGN(K)=LGN(K)+2.0D0*M(J)*LAM(J,K)
                                                                            28420
  870 CONTINUE
                                                                            28430
  800 CONTINUE
                                                                            28440
C
                                                                            28450
C
      CALCULATE THE OSMOTIC COEFFICIENT
                                                                            28460
C
                                                                            28470
C
      EQUATION (2A) PART 1
                                                                            28480
                                                                            28490
  860 OSMOT=-(AO)*I**1.5DO/(1.0DO+B*DI)
                                                                            28500
      DO 420 J=1,M1
                                                                            28510
      IF (.NOT.IPRSNT(J)) GO TO 420
                                                                            28520
      DO 430 K=21,M2
                                                                            28530
      IF (.NOT.IPRSNT(K)) GO TO 430
                                                                            28540
```

```
C
                                                                             28550
C
      EQUATION (2A) PART 2
                                                                             28560
C
                                                                             28570
      OSMOT=OSMOT+M(J)*M(K)*(BMXPHI()+BIGZ*CMX())
                                                                             28580
  430 CONTINUE
                                                                             28590
  420 CONTINUE
                                                                             28600
      DO 440 J=1,M1-1
                                                                             28610
      IF (.NOT.IPRSNT(J)) GO TO 440
                                                                             28620
      DO 450 K=J+1,M1
                                                                             28630
      IF (.NOT.IPRSNT(K)) GO TO 450
                                                                             28640
                                                                             28650
      OSMOT=OSMOT+M(J)*M(K)*PHIPHI()
                                                                             28660
      DO 460 KK=21,M2
      IF (.NOT.IPRSNT(KK)) GO TO 460
                                                                             28670
C
                                                                             28680
C
                                                                             28690
      EQUATION (2A) PART 3
C
                                                                             28700
      OSMOT=OSMOT+M(J)*M(K)*M(KK)*PSI(J,K,KK)
                                                                             28710
  460 CONTINUE
                                                                             28720
  450 CONTINUE
                                                                             28730
  440 CONTINUE
                                                                             28740
                                                                             28750
      DO 470 J=21,M2-1
                                                                             28760
      IF (.NOT.IPRSNT(J)) GO TO 470
      DO 480 \text{ K}=J+1.\text{M}2
                                                                             28770
                                                                             28780
      IF (.NOT.IPRSNT(K)) GO TO 480
      OSMOT=OSMOT+M(J)*M(K)*PHIPHI()
                                                                             28790
      DO 490 KK=1,M1
                                                                             28800
                                                                             28810
      IF (.NOT.IPRSNT(KK)) GO TO 490
C
                                                                             28820
С
                                                                             28830
      EQUATION (2A) PART 4
C
                                                                             28840
                                                                             28850
      OSMOT=OSMOT+M(J)*M(K)*M(KK)*PSI(J,K,KK)
                                                                             28860
  490 CONTINUE
  480 CONTINUE
                                                                             28870
                                                                             28880
  470 CONTINUE
                                                                             28890
      IF (.NOT.LNEUT) GO TO 850
                                                                             28900
      DO 810 K=1,M3
      DO 820 J=1,M2
                                                                             28910
      IF (.NOT.IPRSNT(J)) GO TO 820
                                                                             28920
C
                                                                             28930
C
      EQUATION (A.3A) PART 5 HARVIE, MOLLER, WEARE (1984)
                                                                             28940
                                                                             28950
      OSMOT = OSMOT + MN(K) * M(J) * LAM(J,K)
                                                                             28960
  820 CONTINUE
                                                                             28970
  810 CONTINUE
                                                                             28980
                                                                             28990
  850 COSMOT=1.0D0+2.0D0*0SMOT/OSUM
C
                                                                             29000
C
      CALCULATE THE ACTIVITY OF WATER
                                                                             29010
C
                                                                             29020
      AW=DEXP(-OSUM*COSMOT/55.50837D0)
                                                                             29030
C
                                                                             29040
C
      SET APPROPRIATE VALUES FOR RETURN
                                                                             29050
C
                                                                             29060
      MU=I
                                                                             29070
      DO 900 N=1,M2
                                                                             29080
      IF (.NOT.IPRSNT(N)) GO TO 900
                                                                             29090
      LG(TRANS(N))=LGAMMA(N)*CONV
                                                                             29100
```

```
29110
  900 CONTINUE
                                                                            29120
      IF (.NOT.LNEUT) RETURN
                                                                            29130
      DO 910 N=1,M3
      LG(IN(N))=LGN(N) *CONV
                                                                            29140
  910 CONTINUE
                                                                            29150
      RETURN
                                                                            29160
      END
                                                                            29170
C
                                                                            29180
C
      THESE FUNCTIONS CALCULATE THE BM'S
                                                                            29190
C
                                                                            29200
      DOUBLE PRECISION FUNCTION BMXPHI()
                                                                            29210
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                            29220
      COMMON / MX2 / I,J,K
                                                                            29230
                                                                            29240
      COMMON / MX3 / BCX, OTEMP
C
                                                                            29250
C
      ALPHA DEFINED IN BLOCK DATA
                                                                            29260
C
                                                                            29270
      COMMON / MX9 / ALPHA
                                                                            29280
      DIMENSION ALPHA (5), BCX(4,20,21:40)
                                                                            29290
                                                                            29300
      DOUBLE PRECISION I
      LOGICAL TWOTWO, ONEANY
                                                                            29310
C
                                                                            29320
C
      STATEMENT FUNCTIONS
                                                                            29330
C
                                                                            29340
C
      EQUATION (5)
                                                                             29350
C
                                                                            29360
      G(Y)=2.0D0*(1.0D0-(1.0D0+Y)*DEXP(-Y))/Y**2.0D0
                                                                            29370
C
                                                                             29380
C
      EQUATION (6)
                                                                             29390
C
                                                                            29400
      GP(Y) = -2.0D0*(1.0D0-(1.0D0+Y+Y**2.0D0/2.0D0)*DEXP(-Y))/
                                                                            29410
     1 Y**2.0D0
                                                                             29420
C
                                                                             29430
      IF (ONEANY()) GO TO 40
                                                                             29440
      IF (TWOTWO()) GO TO 50
                                                                             29450
C
                                                                             29460
C
      EQUATION (7A)
                                                                             29470
C
                                                                             29480
      BMXPHI = BCX(1,J,K) + BCX(2,J,K) * DEXP(-ALPHA(4) * DSQRT(I)) + BCX(3,J,K) *
                                                                             29490
     1 DEXP(-ALPHA(5)*DSQRT(I))
                                                                             29500
      RETURN
                                                                             29510
C
                                                                             29520
C
      EQUATION (4A)
                                                                             29530
C
                                                                             29540
   40 BMXPHI=BCX(1,J,K)+BCX(2,J,K)*DEXP(-ALPHA(1)*DSQRT(I))
                                                                             29550
      RETURN
                                                                             29560
C
                                                                             29570
C
      EQUATION (7A)
                                                                             29580
C
                                                                             29590
   50 BMXPHI=BCX(1,J,K)+BCX(2,J,K)*DEXP(-ALPHA(2)*DSQRT(I))+BCX(3,J,K)*
                                                                            29600
     1 DEXP(-ALPHA(3)*DSQRT(I))
                                                                             29610
      RETURN
                                                                             29620
      *****
C
                                                                             29630
                                                                             29640
      ENTRY BMX
      *****
C
                                                                             29650
      IF (ONEANY()) GO TO 55
                                                                             29660
```

```
29670
      IF (TWOTWO()) GO TO 60
                                                                            29680
C
C
                                                                            29690
      EQUATION (7B)
C
                                                                            29700
      BMX=BCX(1,J,K)+BCX(2,J,K)*G(ALPHA(4)*DSQRT(I))+BCX(3,J,K)*
                                                                            29710
                                                                            29720
     1 G(ALPHA(5)*DSQRT(I))
      RETURN
                                                                            29730
                                                                            29740
C
C
      EQUATION (4B)
                                                                            29750
C
                                                                            29760
   55 BMX=BCX(1,J,K)+BCX(2,J,K)*G(ALPHA(1)*DSQRT(I))
                                                                            29770
                                                                            29780
      RETURN
C
                                                                            29790
C
                                                                            29800
      EQUATION (7B)
C
                                                                            29810
   60 BMX=BCX(1,J,K)+BCX(2,J,K)*G(ALPHA(2)*DSQRT(I))+BCX(3,J,K)*
                                                                            29820
                                                                            29830
     1 G(ALPHA(3)*DSQRT(I))
      RETURN
                                                                            29840
                                                                            29850
C
                                                                            29860
      ENTRY BMXP
      *******
C
                                                                            29870
      IF (ONEANY()) GO TO 65
                                                                            29880
      IF (TWOTWO()) GO TO 70
                                                                            29890
                                                                            29900
C
C
                                                                            29910
      EQUATION (7C)
                                                                            29920
                                                                            29930
      BMXP = (BCX(2,J,K)*GP(ALPHA(4)*DSQRT(I))+BCX(3,J,K)*GP(ALPHA(5)*
                                                                            29940
     1 DSQRT(I)))/I
      RETURN
                                                                            29950
                                                                            29960
C
C
                                                                            29970
      EQUATION (4C)
C
                                                                            29980
                                                                            29990
   65 BMXP=BCX(2,J,K)*GP(ALPHA(1)*DSQRT(I))/I
                                                                            30000
      RETURN
                                                                            30010
C
C
                                                                            30020
      EQUATION (7C)
                                                                            30030
   70 BMXP=(BCX(2,J,K)*GP(ALPHA(2)*DSQRT(I))+BCX(3,J,K)*GP(ALPHA(3)*
                                                                            30040
     1 DSQRT(I)))/I
                                                                             30050
                                                                            30060
      RETURN
                                                                            30070
      END
C
                                                                            30080
C
      SUBROUTINE TO DETERMINE ONE-ANY ELECTROLYTES
                                                                            30090
C
                                                                            30100
C
      ONEANY = .TRUE. IF EITHER ION IS UNIVALENT
                                                                            30110
                                                                            30120
      LOGICAL FUNCTION ONEANY()
                                                                            30130
                                                                            30140
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                            30150
      COMMON / MX2 / I,J,K
                                                                            30160
      COMMON / MX5 / Z
                                                                             30170
      DOUBLE PRECISION I
      DIMENSION Z(40)
                                                                             30180
                                                                            30190
      ONEANY=.FALSE.
      IF (DABS(Z(J)).LT.2.ODO.AND.DABS(Z(J)).GT.O.ODO) ONEANY=.TRUE.
                                                                             30200
      IF (DABS(Z(K)).LT.2.ODO.AND.DABS(Z(K)).GT.O.ODO) ONEANY=.TRUE.
                                                                             30210
      RETURN
                                                                             30220
```

```
30230
      END
C
                                                                            30240
C
      SUBROUTINE TO DETERMINE TWO-TWO ELECTROLYTES
                                                                            30250
C
                                                                            30260
Č
      TWOTWO = .TRUE. IF BOTH IONS ARE DOUBLY CHARGED
                                                                            30270
                                                                            30280
      LOGICAL FUNCTION TWOTWO()
                                                                            30290
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                            30300
      COMMON / MX2 / I,J,K
                                                                            30310
      COMMON / MX5 / Z
                                                                            30320
      DOUBLE PRECISION I
                                                                            30330
                                                                            30340
      DIMENSION Z(40)
      TWOTWO=.FALSE.
                                                                            30350
                                                                            30360
      ZDIF=DABS(DABS(Z(J)*Z(K))-4.0D0)
      IF (ZDIF.LT.1.0D0) TWOTWO=.TRUE.
                                                                            30370
      RETURN
                                                                            30380
                                                                            30390
      END
                                                                            30400
C
С
      FUNCTION TO CALCULATE C(MX)
                                                                            30410
C
                                                                            30420
      DOUBLE PRECISION FUNCTION CMX()
                                                                            30430
                                                                            30440
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                            30450
      COMMON / MX2 / I,J,K
      COMMON / MX3 / BCX, OTEMP
                                                                            30460
      COMMON / MX5 / Z
                                                                            30470
      DOUBLE PRECISION I, Z(40), BCX(4,20,21:40)
                                                                            30480
C
                                                                            30490
C
      EQUATION (9)
                                                                            30500
C
                                                                            30510
      CMX = BCX(4,J,K)/(2.0D0*DSQRT(DABS(Z(J)*Z(K))))
                                                                            30520
      RETURN
                                                                            30530
                                                                            30540
      END
C
                                                                            30550
C
      FUNCTIONS TO CALCULATE ETHETA AND ETHEAP
                                                                            30560
                                                                            30570
      DOUBLE PRECISION FUNCTION ETHETA()
                                                                            30580
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                            30590
      COMMON / MX2 / I,J,K
                                                                            30600
      COMMON / MX4 / AO
                                                                            30610
      COMMON / MX5 / Z
                                                                            30620
      DIMENSION Z(40)
                                                                            30630
      DOUBLE PRECISION I, JAY, JPRIME
                                                                            30640
      IFLAG=1
                                                                            30650
      ETHETA=0.0D0
                                                                            30660
      GO TO 10
                                                                            30670
      *********
C
                                                                            30680
      ENTRY ETHEAP
                                                                            30690
      *********
C
                                                                            30700
      IFLAG=2
                                                                            30710
      ETHEAP=0.0D0
                                                                            30720
   10 XCON=6.0DO*AO*DSQRT(I)
                                                                            30730
      IF (DABS(Z(J)-Z(K)).LE.1.0D-40) RETURN
                                                                            30740
      ZZ=Z(J)*Z(K)
                                                                            30750
C
                                                                            30760
C
      NEXT 3 ARE EQUATION (A1)
                                                                            30770
C
                                                                            30780
```

```
XJK=XCON*ZZ
                                                                            30790
      XJJ=XCON*Z(J)*Z(J)
                                                                            30800
                                                                            30810
      XKK=XCON^{2}Z(K)^{2}Z(K)
C
                                                                            30820
C
      EQUATION (A2)
                                                                            30830
C
                                                                            30840
      ETHETA=ZZ*(JAY(XJK)-JAY(XJJ)/2.0D0-JAY(XKK)/2.0D0)/(4.0D0*I)
                                                                            30850
      IF (IFLAG.EQ.1) RETURN
                                                                            30860
                                                                            30870
C
C
      EQUATION (A3)
                                                                            30880
                                                                            30890
      ETHEAP=ZZ*(JPRIME(XJK)-JPRIME(XJJ)/2.ODO-JPRIME(XKK)/
                                                                            30900
     1.2.000)/(8.000*I**2.000) - ETHETA/I
                                                                            30910
      RETURN
                                                                            30920
      END
                                                                            30930
C
                                                                            30940
C
      FUNCTION TO CALCULATE JAY AND JPRIME
                                                                            30950
C
                                                                            30960
C
      JO AND J1. USED IN CALCULATION OF ETHETA AND ETHEAP
                                                                            30970
                                                                            30980
      DOUBLE PRECISION FUNCTION JAY(X)
                                                                            30990
      IMPLICIT DOUBLE PRECISION (A-H.O-Z)
                                                                            31000
      COMMON / MX8 / AK, BK, DK
                                                                            31010
      DIMENSION AK(0:20,2), BK(0:22), DK(0:22)
                                                                            31020
      DOUBLE PRECISION JPRIME
                                                                            31030
      CALL BDK (X)
                                                                            31040
                                                                            31050
      JAY=X/4.0D0-1.0D0+0.5D0*(BK(0)-BK(2))
      RETURN
                                                                            31060
      *********
C
                                                                            31070
      ENTRY JPRIME(Y)
                                                                            31080
      ******
C
                                                                            31090
      CALL BDK (Y)
                                                                            31100
      IF (Y.GT.1.0D0) GO TO 10
                                                                            31110
      DZ=0.8D0*Y**(-0.8D0)
                                                                            31120
      GO TO 20
                                                                            31130
   10 DZ = -4.0D0*Y**(-1.1D0)/9.0D0
                                                                            31140
   20 JPRIME=Y*(.25D0+DZ*(DK(0)-DK(2))/2.0D0)
                                                                            31150
      RETURN
                                                                            31160
      END
                                                                            31170
C
                                                                            31180
      SUBROUTINE BDK (X)
                                                                            31190
C
                                                                            31200
C
      NUMERICAL APPROXIMATION TO THE INTEGRALS IN THE EXPRESSIONS FOR JO 31210
C
      AND J1. CHEBYSHEV APPROXIMATION IS USED. THE CONSTANTS 'AK' ARE 31220
C
      DEFINED IN BLOCK COMMON.
                                                                            31230
C
                                                                            31240
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                            31250
      COMMON / MX8 / AK, BK, DK
                                                                            31260
      DIMENSION AK(0:20,2), BK(0:22), DK(0:22)
                                                                            31270
      II=1
                                                                            31280
      IF (X.LE.1.0D0) GO TO 10
                                                                            31290
      II=2
                                                                            31300
      Z=40.0*X**(-1.0D-1)/9.0D0-22.0D0/9.0D0
                                                                            31310
      GO TO 20
                                                                            31320
   10 Z=4.0D0*X**(0.2D0)-2.0D0
                                                                            31330
   20 DO 30 M=20.0.-1
                                                                            31340
```

```
BK(M)=Z*BK(M+1)-BK(M+2)+AK(M,II)
                                                                           31350
      DK(M) = BK(M+1) + Z *DK(M+1) - DK(M+2)
                                                                           31360
                                                                           31370
   30 CONTINUE
      RETURN
                                                                           31380
      END
                                                                           31390
C
                                                                           31400
C
      FUNCTION TO CALCULATE PHI (PHI' IS EQUAL TO ETHEAP)
                                                                           31410
C
                                                                           31420
      DOUBLE PRECISION FUNCTION PHI()
                                                                           31430
      IMPLICIT DOUBLE PRECISION (A-H.O-Z)
                                                                           31440
      COMMON / MX2 / I,J,K
                                                                           31450
      COMMON / MX7 / THETA
                                                                           31460
                                                                           31470
      DIMENSION THETA(40,40)
      DOUBLE PRECISION I
                                                                           31480
C
                                                                           31490
C
                                                                           31500
      EQUATION (10B)
C
                                                                           31510
      PHI=THETA(J,K)+ETHETA()
                                                                           31520
      RETURN
                                                                           31530
      *****
C
                                                                           31540
      ENTRY PHIPHI
                                                                           31550
C
      *****
                                                                           31560
C
                                                                           31570
C
      EQUATION (10A)
                                                                           31580
C
                                                                           31590
      PHIPHI=THETA(J,K)+ETHETA()+I*ETHEAP()
                                                                           31600
                                                                           31610
      RETURN
      END
                                                                           31620
C
                                                                           31630
C
      SUBROUTINE TO CALUCLATE TEMPERATURE DEPENDENCE OF PITZER PARAMETER 31640
C
                                                                           31650
      SUBROUTINE PTEMP
                                                                           31660
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                           31670
$INSERT COMMON.BLOCKS
                                                                           31680
      DOUBLE PRECISION BC(4,20,21:40,5), BCX(4,20,21:40)
                                                                           31690
      CHARACTER *8 SPECS(40), NEUTRL(20)
                                                                           31700
      COMMON / MX1 / BC
                                                                           31710
      COMMON / MX3 / BCX, OTEMP
                                                                           31720
      COMMON / MX4 / AO
                                                                           31730
      COMMON / MX10 / VP.DWO
                                                                           31740
      COMMON / PI1C / SPECS, NEUTRL
                                                                           31750
      COMMON / PI1 / M1, M2, M3
                                                                           31760
      DATA TR /298.15/
                                                                           31770
C
                                                                           31780
      IF (DABS(TK-OTEMP).LT.0.01) RETURN
                                                                           31790
      OTEMP=TK
                                                                           31800
      DWO=DW(TK)
                                                                           31810
      IF (DABS(TK-TR).LT.0.01) GO TO 10
                                                                           31820
                                                                           31830
      DCO=DC(TK)
      AO=1.400684D6*(DWO/(DCO*TK)**3.0DO)**0.5DO
                                                                           31840
      DO 30 L=1.4
                                                                           31850
      DO 40 K=1,M1
                                                                           31860
      DO 50 N=21.M2
                                                                           31870
      BCX(L,K,N)=BC(L,K,N,1)+BC(L,K,N,2)*(1.0/TK-1.0/TR)+BC(L,K,N,3)
                                                                           31880
     1*DLOG(TK/TR)+BC(L,K,N,4)*(TK-TR)+BC(L,K,N,5)*(TK*TK-TR*TR)
                                                                           31890
   50 CONTINUE
                                                                           31900
```

```
40 CONTINUE
                                                                            31910
                                                                            31920
   30 CONTINUE
      RETURN
                                                                            31930
   10 DO 20 L=1,4
                                                                             31940
      DO 60 K=1.M1
                                                                            31950
      DO 70 N=21.M2
                                                                            31960
      BCX(L,K,N)=BC(L,K,N,1)
                                                                            31970
   70 CONTINUE
                                                                            31980
   60 CONTINUE
                                                                            31990
   20 CONTINUE
                                                                             32000
      A0=0.392D0
                                                                            32010
      RETURN
                                                                            32020
      END
                                                                             32030
C
                                                                            32040
C
      SUBROUTINE TO INITIALIZE DATA
                                                                            32050
C
                                                                            32060
      SUBROUTINE INITPZ
                                                                             32070
C
                                                                            32080
C
      'PITZER.DATA' IS READ IN THIS SUBROUTINE.
                                                                            32090
C
                                                                             32100
C
      SOME VARIABLES:
                                                                            32110
C
          IS => TOTAL NUMBER OF SPECIES USED IN PITZER'S MODEL
                                                                            32120
C
          NS => INDIVIDUAL SPECIES NUMBERS (IN PHREEQE'S NUMBERING
                                                                            32130
C
                 SYSTEM) USED IN PITZER'S MODEL.
                                                                            32140
C
          TRANS.IN => ARRAYS TO TRANSLATE PHREEOE'S NUMBERING SYSTEM
                                                                            32150
C
                       INTO NUMBERING SYSTEM USED IN SUBROUTINE PITZER.
                                                                            32160
                                                                            32170
      PARAMETER (IF=12)
                                                                            32180
$INSERT COMMON.BLOCKS
                                                                             32190
      INTEGER TRANS(40), IN(20), NS(40)
                                                                             32200
      CHARACTER *8 SPEC1, SPEC2, SPEC3, NEUTRL(20), SPECS(40)
                                                                            32210
      DOUBLE PRECISION PSI(40,40,40).BC(4,20,21:40,5),THETA(40,40),Z(40) 32220
                                                                             32230
     1,LAM(40,20),VALUE(5)
                                                                             32240
      COMMON / MX1 / BC
      COMMON / MX5 / Z
                                                                             32250
      COMMON / MX6 / LAM, TRANS, PSI, IN
                                                                             32260
      COMMON / MX7 / THETA
                                                                             32270
      COMMON / PI1C / SPECS.NEUTRL
                                                                             32280
                                                                             32290
      COMMON / PI1 / M1, M2, M3
      OPEN (UNIT=IF.FILE='PITZER.DATA')
                                                                             32300
      READ (IF, 10) SPEC1, IS
                                                                             32310
   10 FORMAT (A8, I3)
                                                                             32320
      READ (IF,20) (NS(J),J=1,IS)
                                                                             32330
   20 FORMAT (25(I3))
                                                                             32340
      DO 90 J=1,IS
                                                                             32350
      IF (NS(J).GT.O.AND.NS(J).LT.251) GO TO 40
                                                                             32360
                                                                             32370
      WRITE (6,30)
   30 FORMAT (//,' PITZER DATA FILE ERROR.')
                                                                             32380
      STOP
                                                                             32390
   40 IF (DABS(ZSP(NS(J))).LE.1.0D-40) GO TO 80
                                                                             32400
      IF (ZSP(NS(J)).LT.-1.0D-5) GO TO 60
                                                                             32410
C
                                                                             32420
      CATIONS (UP TO 20)
                                                                             32430
                                                                             32440
      M1 = M1 + 1
                                                                             32450
      IF (M1.LE.20) GO TO 58
                                                                             32460
```

```
53 WRITE (6,55)
                                                                              32470
   55 FORMAT (' ***** ERROR: ONLY 20 IONS OF EACH TYPE ARE ALLOWED.')
                                                                              32480
                                                                              32490
      STOP
   58 TRANS(M1)=NS(J)
                                                                              32500
                                                                              32510
      SPECS(M1)=SNAME(NS(J))
      Z(M1)=ZSP(NS(J))
                                                                              32520
                                                                              32530
      GO TO 90
C
                                                                              32540
C
      ANIONS (UP TO 20)
                                                                              32550
                                                                              32560
                                                                              32570
   60 M2=M2+1
                                                                              32580
      IF (M2.GT.40) GO TO 53
      TRANS(M2)=NS(J)
                                                                              32590
                                                                              32600
      SPECS(M2)=SNAME(NS(J))
                                                                              32610
      Z(M2)=ZSP(NS(J))
      GO TO 90
                                                                              32620
C
                                                                              32630
С
                                                                              32640
      NEUTRAL SPECIES (UP TO 20)
C
                                                                              32650
                                                                              32660
   80 M3=M3+1
      IF (M3.GT.20) GO TO 53
                                                                              32670
                                                                              32680
      IN(M3)=NS(J)
      NEUTRL(M3)=SNAME(NS(J))
                                                                              32690
   90 CONTINUE
                                                                              32700
C
                                                                              32710
      READ (IF, 95)
                                                                              32720
   95 FORMAT (1X)
                                                                              32730
      K = 1
                                                                              32740
C
                                                                              32750
C
      READ IN BETA(0), BETA(1), BETA(2), AND C(PHI)
                                                                              32760
                                                                              32770
  100 READ (IF, 105) SPEC1, SPEC2, (VALUE(J), J=1,5)
                                                                              32780
  105 FORMAT (2(2X,A8),5(1X,F11.0))
                                                                              32790
      IF (DABS(VALUE(1)).GT.1.OD-30) GO TO 107
                                                                              32800
      K=K+1
                                                                              32810
      IF (K.GT.4) GO TO 120
                                                                              32820
      GO TO 100
                                                                              32830
  107 K1=ISPEC(SPEC1)
                                                                              32840
      K2=ISPEC(SPEC2)
                                                                              32850
                                                                              32860
      DO 110 J=1,5
      BC(K,K1,K2,J)=VALUE(J)
                                                                              32870
  110 CONTINUE
                                                                              32880
      GO TO 100
                                                                              32890
  120 READ (IF, 105) SPEC1, SPEC2, VALUE(1)
                                                                              32900
      IF (DABS(VALUE(1)).LE.1.0D-40) GO TO 130
                                                                              32910
                                                                              32920
      I1=ISPEC(SPEC1)
      I2=ISPEC(SPEC2)
                                                                              32930
      THETA(I1,I2)=VALUE(1)
                                                                              32940
      THETA(I2, I1) = VALUE(1)
                                                                              32950
      GO TO 120
                                                                              32960
C
                                                                              32970
C
      READ IN LAMBDA
                                                                              32980
                                                                              32990
  130 READ (IF, 105) SPEC1, SPEC2, VALUE(1)
                                                                              33000
      IF (DABS(VALUE(1)).LE.1.OD-40) GO TO 140
                                                                              33010
      LAM(ISPEC(SPEC1), ISPEC(SPEC2))=VALUE(1)
                                                                              33020
```

```
GO TO 130
                                                                             33030
         INITIALIZE PSI (TOO BIG TO DO IT IN BLOCK DATA)
                                                                             33040
  140 I1=1
                                                                             33050
      12=1
                                                                             33060
      13 = 1
                                                                             33070
  142 PSI(I1,I2,I3)=0.0D0
                                                                             33080
      I1=I1+1
                                                                             33090
      IF (I1.GT.M2) GO TO 143
                                                                             33100
      IF (I1.GT.M1.AND.I1.LT.21) I1=21
                                                                             33110
      GO TO 142
                                                                             33120
  143 I1=1
                                                                             33130
      I2=I2+1
                                                                             33140
      IF (I2.GT.M2) GO TO 144
                                                                             33150
      IF (I2.GT.M1.AND.I2.LT.21) I2=21
                                                                             33160
      GO TO 142
                                                                             33170
  144 I2=1
                                                                             33180
      I3=I3+1
                                                                             33190
      IF (I3.GT.M2) GO TO 145
                                                                             33200
      IF (I3.GT.M1.AND.I3.LT.21) I3=21
                                                                             33210
                                                                             33220
      GO TO 142
C
                                                                             33230
C
      READ IN PSI
                                                                             33240
                                                                             33250
  145 READ (IF, 150, END=160) SPEC1, SPEC2, SPEC3, VALUE(1)
                                                                             33260
  150 FORMAT (3(2X, A8), 2X, F10.0)
                                                                             33270
                                                                             33280
      I1=ISPEC(SPEC1)
      I2=ISPEC(SPEC2)
                                                                             33290
                                                                             33300
      13=ISPEC(SPEC3)
                                                                             33310
      PSI(I1, I2, I3) = VALUE(1)
      PSI(I1,I3,I2)=VALUE(1)
                                                                             33320
      PSI(12,11,13)=VALUE(1)
                                                                             33330
      PSI(12,13,11)=VALUE(1)
                                                                             33340
      PSI(13,11,12)=VALUE(1)
                                                                             33350
      PSI(I3,I2,I1)=VALUE(1)
                                                                             33360
      GO TO 145
                                                                             33370
  160 CLOSE (UNIT=IF)
                                                                             33380
      RETURN
                                                                             33390
      END
                                                                             33400
                                                                             33410
C
      FUNCTION TO TRANSFORM SPECIES NAME INTO SPECIES NUMBER
                                                                             33420
C
                                                                             33430
      FUNCTION ISPEC(SPEC)
                                                                             33440
      CHARACTER *8 SPEC, SPECS(40), NEUTRL(20)
                                                                             33450
      COMMON / PI1C / SPECS, NEUTRL
                                                                             33460
      COMMON / PI1 / M1,M2,M3
                                                                             33470
      DO 10 I=1,M2
                                                                             33480
      IF (I.GT.M1.AND.I.LT.21) GO TO 10
                                                                             33490
      IF (SPEC.EQ.SPECS(I)) GO TO 20
                                                                             33500
   10 CONTINUE
                                                                             33510
      DO 40 I=1,M3
                                                                             33520
      IF (SPEC.EQ.NEUTRL(I)) GO TO 20
                                                                             33530
   40 CONTINUE
                                                                             33540
      WRITE (6,30) SPEC
                                                                             33550
   30 FORMAT (' ****** ERROR IN DATA BASE ***** ', A8, ' IS NOT A '
                                                                             33560
                                                                             33570
     1, 'VALID ION.')
      STOP
                                                                             33580
```

```
33590
   20 ISPEC=I
                                                                            33600
      RETURN
      END
                                                                            33610
C
                                                                            33620
C
       SUBROUTINE TO CALCULATE THE DENSITY OF WATER AS A FUNCTION OF
                                                                            33630
C
       TEMPERATURE. T IS IN KELVIN, P IS IN PASCALS, DW IS IN G/CM<sup>3</sup>
                                                                            33640
С
                                                                            33650
C
      FROM L. HAAR, J. S. GALLAGHER, AND G. S. KELL, (1984)
                                                                            33660
C
                                                                            33670
      DOUBLE PRECISION FUNCTION DW (T)
                                                                            33680
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                            33690
      COMMON / MX10 / VP,DWO
                                                                            33700
      COMMON /ACONST/ GASCON, TZ, AA, Z, DZ, Y
                                                                            33710
      DATA FP / 9.869232667D0 /
                                                                            33720
      CALL BB (T)
                                                                            33730
                                                                            33740
      P=1.0DO/FP
      IF (T.GT.373.149D0) P=PS(T)
                                                                            33750
      DGSS=P/T/.4D0
                                                                            33760
      IF (T.GE.TZ) GO TO 10
                                                                            33770
      DGSS=1.0D0/(VLEST(T))
                                                                            33780
   10 CALL DFIND (D,P,DGSS,T)
                                                                            33790
      DW=D
                                                                            33800
                                                                            33810
      VP=P*FP
                                                                            33820
      RETURN
      END
                                                                            33830
C
                                                                            33840
C
      THIS SUBROUTINE CALCULATES THE B'S NEEDED FOR FUNCTION DW.
                                                                            33850
C
      THE B'S CALCULATED HERE ARE IN CM3/G.
                                                                            33860
C
                                                                            33870
С
      FROM L. HAAR, J. S. GALLAGHER, AND G. S. KELL, (1984)
                                                                            33880
                                                                            33890
      SUBROUTINE BB(T)
                                                                            33900
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                            33910
      COMMON /ELLCON/ G1,G2,GF,B1,B2,B1T,B2T,B1TT,B2TT
                                                                            33920
      COMMON /ACONST/ GASCON, TZ, AA, Z, DZ, Y
                                                                            33930
      COMMON /BCONST/ P(10),Q(10)
                                                                            33940
      DIMENSION V(10)
                                                                            33950
                                                                            33960
      V(1)=1.D0
                                                                            33970
      D0 2 I=2,10
   2 V(I)=V(I-1)*TZ/T
                                                                            33980
                                                                             33990
      B1=P(1)+P(2)*DLOG(1.D0/V(2))
      B2=0(1)
                                                                             34000
      B1T=P(2)*V(2)/TZ
                                                                             34010
                                                                             34020
      B2T=0.D0
      B1TT=0.D0
                                                                             34030
      B2TT=0.D0
                                                                             34040
      DO 4 I=3.10
                                                                             34050
      B1=B1+P(I)*V(I-1)
                                                                             34060
      B2=B2+Q(I)*V(I-1)
                                                                             34070
      B1T=B1T-(I-2)*P(I)*V(I-1)/T
                                                                             34080
      B2T=B2T-(I-2)*O(I)*V(I-1)/T
                                                                             34090
      B1TT=B1TT+P(I)*(I-2)**2*V(I-1)/T/T
                                                                             34100
   4 B2TT=B2TT+Q(I)*(I-2)**2*V(I-1)/T/T
                                                                            34110
      B1TT=B1TT-B1T/T
                                                                             34120
      B2TT=B2TT-B2T/T
                                                                             34130
      RETURN
                                                                             34140
```

```
END
                                                                            34150
C
                                                                            34160
C
      THIS FUNCTION CALCULATES THE Z (=PBASE/(DRT)) NEEDED FOR FUNCTION 34170
C
                                                                            34180
С
                                                                            34190
      FROM L. HAAR, J. S. GALLAGHER, AND G. S. KELL, (1984)
C
                                                                            34200
      FUNCTION BASE(D,T)
                                                                            34210
                                                                            34220
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      COMMON /ELLCON/ G1,G2,GF,B1,B2,B1T,B2T,B1TT,B2TT
                                                                            34230
C
                                                                            34240
C
      G1.G2 AND GF ARE THE ALPHA, BETA AND GAMMA FOR DENSITY OF WATER
                                                                            34250
C
      CALCULATIONS. B1 AND B2 ARE THE 'EXCLUDED VOLUME' AND '2ND VIRIAL 34260
C
      SUPPLIED BY THE SUBROUTINE BB(T), WHICH ALSO SUPPLIES THE 1ST AND 34270
C
      2ND DERIVATIVES WITH RESPECT TO T (B1T, B2T, B1TT, B2TT).
                                                                            34280
                                                                            34290
      COMMON /ACONST/ GASCON, TZ, A, Z, DZ, Y
                                                                            34300
      Y=.25D0*B1*D
                                                                            34310
                                                                            34320
      X = 1.D0 - Y
      Z0=(1.D0+G1*Y+G2*Y*Y)/X**3
                                                                            34330
      Z=ZO+4.DO*Y*(B2/B1-GF)
                                                                            34340
                                                                            34350
      DZO=(G1+2.D0*G2*Y)/X**3 + 3.D0*(1.D0+G1*Y+G2*Y*Y)/X**4
      DZ = DZO + 4.DO*(B2/B1-GF)
                                                                            34360
      BASE=Z
                                                                            34370
                                                                            34380
      RETURN
                                                                            34390
      END
C
                                                                            34400
C
      THIS ROUTINE CALCULATES, FOR A GIVEN T(K) AND D(G/CM3), THE RESIDU 34410
C
      CONTRIBUTIONS TO: PRESSURE (Q), DP/DRHO (Q5)
                                                                            34420
C
      THIS SUBROUTINE IS USED IN DENSITY OF WATER CALCULATION.
                                                                            34430
C
                                                                            34440
C
      FROM L. HAAR, J. S. GALLAGHER, AND G. S. KELL, (1984)
                                                                            34450
                                                                            34460
                                                                            34470
      SUBROUTINE QQ(T,D)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                            34480
      COMMON /QQQQ/ Q.Q5
                                                                            34490
      DIMENSION QR(11),QT(10),QZR(9),QZT(9)
                                                                            34500
                                                                            34510
      EQUIVALENCE (QR(3),QZR(1)),(QT(2),QZT(1))
      COMMON /NCONST/ G(40), II(40), JJ(40), N
                                                                            34520
      COMMON /ACONST/ GASCON, TZ, AA, Z, DZ, Y
                                                                            34530
                                                                            34540
      COMMON /ADDCON/ ATZ(4), ADZ(4), AAT(4), AAD(4)
      RT=GASCON*T
                                                                            34550
      QR(1)=0.D0
                                                                            34560
                                                                            34570
      05=0.D0
                                                                            34580
      Q=0.D0
      E=DEXP(-AA*D)
                                                                            34590
      010=D*D*E
                                                                            34600
      Q20=1.D0-E
                                                                            34610
      OR(2) = 010
                                                                            34620
      V=TZ/T
                                                                            34630
      QT(1)=T/TZ
                                                                            34640
      DO 4 I=2.10
                                                                            34650
      QR(I+1)=QR(I)*Q20
                                                                            34660
   4 \quad QT(I) = QT(I-1)*V
                                                                            34670
      DO 10 I=1.N
                                                                            34680
      K=II(I)+1
                                                                            34690
      L=JJ(I)
                                                                            34700
```

```
34710
      ZZ=K
                                                                           34720
      OP=G(I)*AA*OR(K+1)*OZT(L)
                                                                           34730
      0=0+0P
   10 Q5 = Q5 + AA*(2.DO/D-AA*(1.DO-E*(K-1)/Q20))*QP
                                                                           34740
                                                                           34750
      OP=0.D0
                                                                           34760
C
      DO 20 J=37.40
                                                                           34770
                                                                           34780
      IF(DABS(G(J)).LT.1.0D-20) GO TO 20
                                                                           34790
      K=II(J)
      KM=JJ(J)
                                                                           34800
      DDZ = ADZ(J-36)
                                                                           34810
      DEL = D/DDZ - 1.DO
                                                                           34820
      IF(DABS(DEL).LT.1.D-10) DEL=1.D-10
                                                                           34830
      EX1 = -AAD(J-36)*DEL**K
                                                                           34840
                                                                           34850
      IF(EX1.GT.-88.028D0) GO TO 5
                                                                           34860
      DEX=0.DO
                                                                           34870
      GO TO 6
    5 CONTINUE
                                                                           34880
       DEX=DEXP(EX1)*DEL**KM
                                                                           34890
                                                                           34900
    6 CONTINUE
      ATT = AAT(J-36)
                                                                           34910
                                                                           34920
      TX = ATZ(J-36)
      TAU = T/TX-1.D0
                                                                           34930
      EX2 = -ATT*TAU*TAU
                                                                           34940
      IF(EX2.GT.-88.028D0) GO TO 7
                                                                           34950
                                                                           34960
      TEX=0.DO
      GO TO 8
                                                                           34970
                                                                           34980
    7 CONTINUE
      TEX = DEXP(EX2)
                                                                           34990
    8 CONTINUE
                                                                           35000
      Q10 = DEX*TEX
                                                                           35010
      QM = KM/DEL - K*AAD(J-36)*DEL**(K-1)
                                                                           35020
      FCT=QM*D**2*Q10/DDZ
                                                                           35030
      Q5T = FCT*(2.D0/D+QM/DDZ)-(D/DDZ)**2*Q10*(KM/DEL/DEL+
                                                                           35040
     1 K*(K-1)*AAD(J-36)*DEL**(K-2)
                                                                           35050
      Q5 = Q5 + Q5T*G(J)
                                                                           35060
      QP = QP + G(J)*FCT
                                                                           35070
  20 CONTINUE
                                                                           35080
      0=0+0P
                                                                           35090
      RETURN
                                                                           35100
      END
                                                                           35110
C
                                                                           35120
      ROUTINE TO FIND DENSITY CORRESPONDING TO INPUT PRESSURE P(MPA), AN 35130
C
C
      TEMPERATURE T(K), USING INITIAL GUESS DENSITY D(G/CM3). THE OUTPUT 35140
C
      DENSITY IS IN G/CM3.
                                                                           35150
C
                                                                           35160
C
      FROM L. HAAR, J. S. GALLAGHER, AND G. S. KELL, (1984)
                                                                           35170
C
                                                                           35180
      SUBROUTINE DFIND(DOUT, P.D.T)
                                                                           35190
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                           35200
      COMMON /QQQQ/ Q0.Q5
                                                                           35210
      COMMON /ACONST/ GASCON, TZ, AA, Z, DZ, Y
                                                                           35220
      DD=D
                                                                           35230
      RT=GASCON*T
                                                                           35240
      IF(DD.LE.O.DO) DD=1.D-8
                                                                           35250
      IF(DD.GT.1.9D0) DD=1.9D0
                                                                           35260
```

```
35270
      L=0
    9 L=L+1
                                                                           35280
      IF(DD.LE.O.DO) DD=1.D-8
                                                                           35290
      IF(DD.GT.1.9D0) DD=1.9D0
                                                                           35300
      CALL QQ(T,DD)
                                                                           35310
      PP = RT*DD*BASE(DD,T)+QO
                                                                           35320
      DPD=RT*(Z+Y*DZ)+Q5
                                                                           35330
C
                                                                           35340
C
  THE FOLLOWING 3 LINES CHECK FOR NEGATIVE DP/DRHO, AND IF SO ASSUME
                                                                           35350
C
     GUESS TO BE IN 2-PHASE REGION, AND CORRECT GUESS ACCORDINGLY.
                                                                           35360
C
                                                                           35370
      IF(DPD.GT.O.DO) GO TO 13
                                                                           35380
      IF(D.GE..2967D0) DD=DD*1.02D0
                                                                           35390
      IF(D.LT..2967D0) DD=DD*.98D0
                                                                           35400
      IF(L.LE.10) GO TO 9
                                                                           35410
  13 DPDX=DPD#1.1D0
                                                                           35420
      IF(DPDX.LT..1DO) DPDX=.1DO
                                                                           35430
      DP=DABS(1.DO-PP/P)
                                                                           35440
      IF(DP.LT.1.D-8) GO TO 20
                                                                           35450
      IF(D.GT..3DO .AND. DP.LT.1.D-7) GO TO 20
                                                                           35460
      IF(D.GT..7DO .AND. DP.LT.1.D-6) GO TO 20
                                                                           35470
      X=(P-PP)/DPDX
                                                                           35480
                                                                           35490
      IF(DABS(X).GT..1D0) X=X*.1D0/DABS(X)
                                                                           35500
      IF(DD.LE.O.DO) DD=1.D-8
                                                                           35510
      IF(L.LE.30) GO TO 9
                                                                           35520
      STOP 1
                                                                           35530
   20 CONTINUE
                                                                           35540
      DOUT=DD
                                                                           35550
      RETURN
                                                                           35560
      END
                                                                           35570
C
                                                                           35580
C
      THIS FUNCTION CALCULATES AN APPROXIMATION TO THE VAPOR PRESSURE, P 35590
C
      AS A FUNCTION OF THE INPUT TEMPERATURE. THE VAPOR PRESSURE
                                                                           35600
C
      CALCULATED AGREES WITH THE VAPOR PRESSURE PREDICTED BY THE SURFACE 35610
C
      TO WITHIN .02% TO WITHIN A DEGREE OR SO OF THE CRITICAL TEMPERATUR 35620
C
      AND CAN SERVE AS AN INITIAL GUESS FOR FURTHER REFINEMENT BY
                                                                           35630
C
      IMPOSING THE CONDITION THAT GL=GV.
                                                                           35640
Č
                                                                           35650
C
      FROM L. HAAR, J. S. GALLAGHER, AND G. S. KELL, (1984)
                                                                           35660
C
                                                                           35670
                                                                           35680
      FUNCTION PS(T)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                           35690
      DIMENSION A(8)
                                                                           35700
                                                                           35710
      DATA A/-7.8889166D0,2.5514255D0,-6.716169D0
     1,33.239495D0,-105.38479D0,174.35319D0,-148.39348D0
                                                                           35720
     2,48.631602D0/
                                                                           35730
      IF(T.GT.314.DO) GO TO 2
                                                                           35740
      PL=6.3573118D0-8858.843D0/T+607.56335D0*T**(-.6)
                                                                           35750
      PS=.1*DEXP(PL)
                                                                           35760
      RETURN
                                                                           35770
   2 V=T/647.25D0
                                                                           35780
      W=DABS(1.DO-V)
                                                                           35790
      B=0.D0
                                                                           35800
      DO 4 I=1.8
                                                                           35810
      Z = I
                                                                           35820
```

```
4 B=B+A(I)*W**((Z+1.D0)/2.D0)
                                                                             35830
      Q=B/V
                                                                             35840
      PS=22.093D0*DEXP(0)
                                                                             35850
      RETURN
                                                                             35860
      END
                                                                             35870
C
                                                                             35880
      FUNCTION VLEST (T)
                                                                             35890
C
                                                                             35900
C
      FROM L. HAAR, J. S. GALLAGHER, AND G. S. KELL, (1984)
                                                                             35910
C
                                                                             35920
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                             35930
      DATA A,B,C,D,E,F,G/-1.59259D1,6.57886D-2,-1.12666D-4.7.33191D-8.
                                                                             35940
                           1.60229D3,2.88572D0,650.0D0/
                                                                             35950
     1
      VLEST = A + B + T + C + T + T + D + T + 3 + E / T + F / (G - T)
                                                                             35960
      RETURN
                                                                             35970
      END
                                                                             35980
C
                                                                             35990
C
      THIS FUNCTION CALCULATES THE RELATIVE DIELECTRIC CONSTANT AS A
                                                                             36000
C
      FUNCTION OF TEMPERATURE, ASSUMING ONE ATMOSPHERE PRESSURE
                                                                             36010
C
      ACCORDING TO D. J. BRADLEY AND K. S. PITZER, (1979)
                                                                             36020
C
                                                                             36030
                                                                             36040
      DOUBLE PRECISION FUNCTION DC (T)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                             36050
      COMMON / MX10 / VP,DWO
                                                                             36060
      DIMENSION U(9)
                                                                             36070
      DATA U / 3.4279D2, -5.0866D-3, 9.4690E-7, -2.0525D0, 3.1159D3
                                                                             36080
     1, -1.8289D2, -8.0325D3, 4.2142D6, 2.1417D0 /
                                                                             36090
      D1000=U(1)*DEXP(U(2)*T+U(3)*T*T)
                                                                             36100
      C=U(4)+U(5)/(U(6)+T)
                                                                             36110
      B=U(7)+U(8)/T+U(9)*T
                                                                             36120
      DC=D1000+C*DLOG((B+VP*1.01325)/(B+1000.0D0))
                                                                             36130
      RETURN
                                                                             36140
      END
                                                                             36150
```

```
00010
THE FILE COMMON.BLOCKS TO BE INSERTED IN PHRQPITZ AT $INSERT
                                                                          00020
STATEMENTS.
                                                                          00030
                                                                          00040
 IMPLICIT DOUBLE PRECISION(A-H,O-Z), INTEGER(I-N)
                                                                          00050
CHARACTER *4 TITLE, HEAD
                                                                          00060
CHARACTER *12 SNAME, TNAME, MNAME, NAMELK, NMEANG, SUNAME
                                                                          00070
COMMON /CHARS/ TITLE(20), HEAD(2,20), SNAME(250), TNAME(30),
                                                                          00080
        MNAME(20), NAMELK(40), NMEANG(40), SUNAME(10)
                                                                          00090
DOUBLE PRECISION LM, M, LA, LG, LKSP, LKMIN, MU
                                                                          00100
COMMON /REAL8/ LM(250), M(250), LA(250), LG(250), LKSP(250),
                                                                          00110
        TOT(50), DELTA(50), DELTOT(50), AR(50,50),
                                                                          00120
2
        AS(50,50), CR(50), CS(50), LKMIN(20),
                                                                          00130
3
                                                                          00140
        THOR, ELECT, THSOLN, PH, PE, A, B, MU, TOTAL (2,30),
        DALKT, DALKS, DIFFZ(2), DZOFF
                                                                          00150
DOUBLE PRECISION LKTOSP, LKTOM, LKMINO
                                                                          00160
COMMON /REAL4/ CSP(250,6), ZSP(250), THSP(250), LKTOSP(250),
                                                                          00170
        DHSP(250), ASP(250,5), ADHSP(250,2), TH(2),
                                                                          00180
2
        TEMP(2), CMIN(20, 10), THMIN(20), LKTOM(20),
                                                                          00190
3
        DHMIN(20), AMIN(20,5), CMCON(20,5), CMINO(20,10),
                                                                          00200
        LKMINO(20), VO, TITRPH(50), TITRML(50), TK, TC, XSTEP(50),
                                                                          00210
5
        TSTEP(50), CREAC(30), THREAC,
                                                                          00220
        THMEAN(30), DHA(250), ALKSP(250), SDENS(2), GFW(30),
                                                                          00230
        IMEANG(40), LMEANG(40,3), CMEANG(40,3), NMGS
                                                                          00240
 INTEGER GFLAG, SFLAG
                                                                          00250
COMMON /INT2/ NSP(250), LSP(250,6), KFLAG(250), GFLAG(250),
                                                                          00260
        SFLAG(250), LASTT, LASTS, IIN(50), IOUT(50), IFE, ILE,
                                                                          00270
2
        IFTH, ILTH, IFT, ILT, IFM, ILM, NEQ, NEQ1, IESPEC, ISOLV(2),
                                                                          00280
3
        NMIN(20), LMIN(20, 10), MFLAG(20), LMCON(20, 5), NMCON(20),
                                                                          00290
4
        LMINO(20,10), NMINO(20), IOPT(10), NMINS, NSTEPS, NCOMPS,
                                                                          00300
5
        NELTS, NSPECS, ISTEP, LREAC(30), MAXT, MAXT1, MAXM, MAXEQ,
                                                                          00310
        MAXS, NRMINS, ITER, ISOL, IASPEC, IALK(2), IUNITS(2)
                                                                          00320
DOUBLE PRECISION LKLOOK, LKOLK
                                                                          00330
 COMMON /LOOK/ LKOLK(40), LKLOOK(40), DHLOOK(40),
                                                                          00340
        ALOOK(40,5), CLOOK(40,10), LLOOK(40,10), NLOOK(40),
                                                                          00350
        LOOKFL(40), NLOOKS
                                                                          00360
 COMMON /OFFSET/ SIMIN(20)
                                                                          00370
 COMMON /CHKIT/ JCHECK, ICHECK
                                                                          00380
 COMMON /H2O/ ICKH2O, ITER1
                                                                          00390
 COMMON /NEUT/ DNEUT, NSUM(10), NSUMS, LSUM(10,50), LPOS, LNEG
                                                                          00400
 COMMON / PMIN / KMIN
                                                                          00410
```

C

C

C

PROGRAM PITZINPT

```
00020
                                                                        00030
           **PROGRAM TO FORMAT INPUT-DATA FOR PHROPITZ**
                                                                        00040
                                                                        00050
    THIS INTERACTIVE PROGRAM WILL SET UP THE INPUT FILE OF
                                                                        00060
    PHRQPITZ BY ASKING THE USER VALUES OF THE VARIABLES. ALL
                                                                        00070
    QUESTIONS SHOULD BE SELF-EXPLANATORY. IF YOU DON'T
                                                                        00080
    UNDERSTAND THE USE OF A CERTAIN VARIABLE, A SHORT EXPLANATION
                                                                        00090
    OF THAT VARIABLE IS AVAILABLE BY ENTERING A "?". IN SOME
                                                                        00100
    CASES. HELP IS ALSO OBTAINABLE BY ENTERING SOMETHING THAT IS
                                                                        00110
    INCOMPATIBLE WITH THE VARIABLE OR JUST A <CR>. TO BE ON THE
                                                                        00120
    SAFE SIDE, HOWEVER, A "?" IS RECOMMENDED.
                                                                        00130
                                                                        00140
    AFTER EACH RECORD, OR CARD, IS COMPLETED, IT WILL BE PRINTED
                                                                        00150
    ON THE SCREEN AND YOU WILL BE ASKED WHETHER THIS CARD IS ALL
                                                                        00160
            IF YOU ANSWER 'NO', THE PROGRAM WILL TAKE THE
                                                                        00170
    VARIABLES ON THE CARD, PRINT THEM INDIVIDUALLY, AND YOU WILL
                                                                        00180
    BE GIVEN THE CHANCE OF CORRECTING ANY OF THEM. IF YOU ANSWER
                                                                        00190
    'YES', THE PROGRAM WILL GO ON TO THE NEXT CARD AND YOU WILL
                                                                        00200
    NOT HAVE ANY MORE CHANCE OF CORRECTING ANY VARIABLES ON THAT
                                                                        00210
    CARD.
                                                                        00220
                                                                        00230
                                                                        00240
       -WRITTEN BY GEORGE W. FLEMING AND L. NIEL PLUMMER-
                                                                        00250
                                 SUMMER, 1980.
                                                                        00260
                    LAST UPDATE--NOVEMBER, 1987
                                                                        00270
                                                                        00280
                                                                        00290
COMMON / PHRQ1 / ADHSP(250,2),ALKSP(250),AMIN(2,100,5),ASP(250,5)
                                                                        00300
1, CMIN(2, 100, 10), CREAC(30), CSP(250, 6), DHA(250), DHMIN(2, 100)
                                                                        00310
2, DHSP(250), DTOT(2,30), GFLAG(250), HEAD(2), IALK(2), IOPT(10)
                                                                        00320
3, ISDEL(250), IUNITS(2), KFLAG(250), LKTOM(2, 100), LKTOSP(250)
                                                                        00330
4, LMIN(2, 100, 10), LNEG, LPOS, LREAC(30), LSP(250,6), LSUM(10,50)
                                                                        00340
COMMON / PHRQ2 / LT(2,30), MFLAG(2,100), MNAME(2,100), NCOMPS
                                                                        00350
1, NELT(30), NI(250), NMINO(2,100), NSOLUTION(2), NSP(250), NSTEPS
                                                                        00360
2,NSUM(10),PE(2),PH(2),SDENS(2),SIMIN(2,100),SNAME(250),SUNAME(10)
                                                                        00370
3, TEMP(2), TGFW(30), THMEAN(30), THMIN(2, 100), THSP(250), TITLE
                                                                        00380
4, TNAME(30), VO, XSTEP(50), XTEMP(50), ZSP(250)
                                                                        00390
DIMENSION JSUB(11), IMINERAL(2), IMORE(11), NTOTS(2), IREQUIRED(11)
                                                                        00400
2, ICHECK(2,4:30), MUSED(100), IORDER(11), IMAX(10)
                                                                        00410
                                                                        00420
 COMMON /IUNIT/ J
 COMMON /REFF/ JOPTION, IOPEN, JLINE
                                                                        00430
                                                                        00440
 COMMON /REFF1/ I
                                                                        00450
 COMMON /PN/ NFLAG
                                                                        00460
 COMMON /EE/ EXIT, LIST, LINE, JFLAG
COMMON /PT/ MNAMEO, NMINOO(100), THMINO, LKTOMO, DHMINO, MFLAGO(100)
                                                                        00470
1, SIMINO, LMINO(100, 10), CMINO, AMINO, IMINO, SUB, ICOL1, ICOL2(0:30)
                                                                        00480
2, ICOL3, ICOL4, SPEC, OPV (30)
                                                                        00490
                                                                        00500
 PARAMETER (IOUT=10)
                                                                        00510
 REAL ICOL3(0:30)
 LOGICAL YN, EXIT, LIST, STOP, OK
                                                                        00520
 INTEGER GFLAG, OUT
                                                                        00530
 CHARACTER *80 TITLE, LINE, HEAD, JLINE(3)
                                                                        00540
```

00010

```
CHARACTER *72 TFILE
                                                                               00550
      CHARACTER *8 SUB(11), KEYWORD(20), TNAME, SNAME, MNAME, SUNAME, DELETE
                                                                               00560
     1, ICOL1(0:30), ICOL4(0:30), CSP, MNAMEO(100), SPEC(30), CREAC, THMEAN
                                                                               00570
     2, EQUIVWT, SUBO(11)
                                                                               00580
      CHARACTER *12 OPTION, VO, PH, PE, TEMP, SDENS, TGFW, ZSP, THSP, DHA
                                                                               00590
     1, ADHSP, ALKSP, LKTOSP, THMIN, LKTOM, DHMIN, SIMIN
                                                                               00600
     2, XTEMP, XSTEP, DTOT, CMIN, DHSP, AMIN, ASP, BLANK, CMINO(100, 10)
                                                                               00610
     3, THMINO(100), LKTOMO(100), DHMINO(100), SIMINO(100), AMINO(100,5)
                                                                               00620
      DATA SUB/'SOLUTION', 'ELEMENTS', 'SPECIES ', 'MINERALS', 'LOOK MIN',
                                                                               00630
                                                                            '/ 00640
                            ','REACTION','NEUTRAL','SUMS
                ','STEPS
     2SUBO/'solution', 'elements', 'species ', 'minerals', 'look min',
                                                                               00650
                ','steps ','reaction','neutral ','sums
                                                                            '/ 00660
      DATA OPTION/'OPTION CARD'/BLANK/'
                                              0.0
                                                                               00670
      DATA IMAX/ 1,2,6,3,0,2,2,1,1,1 /IORDER/2,3,1,4,5,6,7,8,9,10,11/
                                                                               00680
     11MORE/1,1,1,1,1,0,0,0,0,1,0/DELETE/'DELETE '/
                                                                               00690
C
                                                                               00700
C
           READ NECESSARY DATA AND INITIALIZE VARIABLES.
                                                                               00710
C
                                                                               00720
      CALL READFILE
                                                                               00730
      WRITE (J,1)
                                                                               00740
    1 FORMAT ('ENTER OUTPUT FILE NAME')
                                                                               00750
      READ (J,20) TFILE
                                                                               00760
   20 FORMAT (A72)
                                                                               00770
      OPEN (UNIT=IOUT, FILE=TFILE, STATUS='UNKNOWN')
                                                                               00780
C
                                                                               00790
                                                                               00800
      ITIME=0
    2 CALL OPEN (ITIME)
                                                                               00810
    3 JOPEN=IOPEN
                                                                               00820
C
                                                                               00830
      DO 101 K=1,11
                                                                               00840
      IREQUIRED(K)=0
                                                                               00850
  101 JSUB(K)=0
                                                                               00860
      DO 103 K=1,100
                                                                               00870
  103 \text{ MUSED(K)} = 0
                                                                               00880
      DO 104 K=1,250
                                                                               00890
  104 \text{ ISDEL}(K)=0
                                                                               00900
      DO 105 K=4,30
                                                                               00910
      DO 105 K2=1,2
                                                                               00920
  105 ICHECK(K2,K)=0
                                                                               00930
      DO 106 K=1.50
                                                                               00940
      XSTEP(K)=BLANK
                                                                               00950
  106 XTEMP(K)=BLANK
                                                                               00960
      DO 102 K=1,30
                                                                               00970
      LREAC(K)=0
                                                                               00980
      CREAC(K)=BLANK
                                                                               00990
  102 THMEAN(K)=BLANK
                                                                               01000
      ISUB=0
                                                                               01010
      IELEMENT=0
                                                                               01020
      IMINERAL(1)=0
                                                                               01030
      IDELETE=0
                                                                               01040
      JDELETE = 0
                                                                               01050
      IMINERAL(2)=0
                                                                               01060
      ISPECIE=0
                                                                               01070
                                                                               01080
      ISUM=0
      NSTART= 1
                                                                               01090
      OUT = I OUT
                                                                               01100
```

```
I = 0
                                                                           01110
      ISOL=0
                                                                           01120
      IERROR=0
                                                                           01130
      JOPTION=0
                                                                           01140
C
                                                                           01150
      IF (IOPEN.EQ.O)GO TO 10
                                                                           01160
C
                                                                           01170
C
          EXPLANATION OF SOME FLAGS:
                                                                           01180
С
                                                                           01190
C
                     -->MAKE SURE THAT FOR EVERY MASTER SPECIES
                                                                           01200
          ICHECK
C
                         ENTERED. THERE IS A CORRESPONDING ELEMENT.
                                                                           01210
С
          IERROR
                      -->FLAG TO SEE IF IT IS OK TO END THE
                                                                           01220
C
                         SIMULATION.
                                                                           01230
С
          JSUB
                      -->KEEPS TRACK OF WHICH DATA BLOCK IS USED,
                                                                           01240
С
                         AND WHICH ISN'T.
                                                                           01250
С
                      -->KEEPS TRACK OF WHICH MINERAL DATA HAS BEEN
          MUSED
                                                                           01260
С
                         CALLED.
                                                                           01270
С
          ISDEL
                      -->SPECIES TO BE DELETED.
                                                                           01280
C
          IELEMENT
                     -->NUMBER OF ELEMENTS.
                                                                           01290
С
          IMINERAL(1) --> NUMBER OF MINERALS.
                                                                           01300
C
          IMINERAL(2) --> NUMBER OF LOOK MINS.
                                                                           01310
С
                     -->NUMBER OF PRE-CONSTRUCTED MINERAL DATA.
                                                                           01320
          IMINO
С
          ISPECIE
                     -->NUMBER OF SPECIES.
                                                                           01330
С
                     -->NUMBER OF SUMS.
          ISUM
                                                                           01340
С
          IDELETE
                     -->SET TO 1 IF ALL MINERALS ARE TO BE DELETED.
                                                                           01350
С
          JDELETE
                     -->SET TO 1 IF ALL OLD SUMS ARE TO BE DELETED.
                                                                           01360
C
                     -->WHICH DATA BLOCK IS THE USER USING.
                                                                           01370
          Ι
С
          NFLAG
                      -->SET TO 1 IF THE VARIABLE IS SEEN BY THE USER
                                                                            01380
C
                         THE SECOND TIME.
                                                                            01390
С
          JFLAG
                      -->USER'S RESPONSE FLAG
                                                                            01400
С
          IREQUIRED -->WHICH DATA BLOCKS ARE REQUIRED.
                                                                            01410
С
          IMASTER
                     -->IS THE SPECIES OR ELEMENT ENTERED 'MASTER'?
                                                                            01420
С
          IOPEN
                     -->IF IT IS > 0, A REFERENCE FILE IS USED.
                                                                            01430
C
                      -->IF IOPEN > O, WHAT DOES THE USER WANT TO DO
                                                                            01440
          JOPTION
C
                         WITH EACH CARD.
                                                                            01450
C
                      -->NUMBER OF TIMES SUBROUTINE OPEN IS CALLED.
          ITIME
                                                                            01460
С
                      -->NUMBER OF LINES TO BE READ FROM THE REFERENCE
          ILINE
                                                                            01470
C
                                                                            01480
                         FILE.
C
                      -->MAXIMUM VALUES PERMITTED FOR EACH OPTION.
          IMAX
                                                                            01490
C
          IORDER
                      -->THE ORDER THAT THE DATA BLOCKS ARE TO BE
                                                                            01500
                                                                            01510
С
                      -->IS IT OK TO CALL A CERTAIN DATA BLOCK MORE
          IMORE
                                                                            01520
С
                         THAN ONCE.
                                                                            01530
С
                                                                            01540
C
                                                                            01550
С
        *** THE TITLE ***
                                                                            01560
                                                                            01570
      WRITE (J.94)
                                                                            01580
   94 FORMAT (/'TITLE CARD:')
                                                                            01590
      CALL REF (1,1,4)
                                                                            01600
                                                                            01610
      TITLE=JLINE(1)
      IF (IOPEN.EQ.O.OR.JOPTION.NE.1)GO TO 10
                                                                            01620
      GO TO 90
                                                                           01630
                                                                           01640
   10 NFLAG=0
      CALL QUESTA (*1000,0,'THE TITLE',9,TITLE,'A80 ',0,0)
                                                                           01650
      WRITE (J,9110)
                                                                           01660
```

```
WRITE (J, 1731) TITLE
                                                                           01670
      IF (.NOT.OK()) GO TO 10
                                                                           01680
C
                                                                           01690
C
        *** OPTIONS ***
                                                                           01700
C
                                                                           01710
   90 IF (IOPEN.EQ.0)GO TO 91
                                                                           01720
      WRITE (J.95) OPTION
                                                                           01730
   95 FORMAT (/,A11,':')
                                                                           01740
      CALL REF (1,1,1)
                                                                           01750
      READ (JLINE(1),9991)(IOPT(N),N=1,10),NSTEPS,NCOMPS,VO
                                                                           01760
      IOPTO3=IOPT(3)
                                                                           01770
      IOPTO4=IOPT(4)
                                                                           01780
      NSTEPSO=NSTEPS
                                                                           01790
                                                                           01800
      NCOMPSO=NCOMPS
      IF (JOPTION.EQ.3.OR.IOPEN.EQ.0)GO TO 91
                                                                           01810
                                                                           01820
      IF (JOPTION.EQ.1)GO TO 92
      GO TO 91
                                                                           01830
                                                                           01840
   91 IOPT(5)=0
      IOPT(6)=2
                                                                            01850
   93 DO 200 N=NSTART, 10
                                                                           01860
      IF (N.EQ.5.OR.N.EQ.6) GO TO 200
                                                                            01870
      CALL QUESTB (*290,N,'IOPT',4,IOPT(N),'I2 ',0,IMAX(N),0)
                                                                            01880
                                                                           01890
  200 CONTINUE
      IF ((IOPT(3).LE.4.AND.IOPT(3).GE.1).OR.IOPT(4).GE.2) GO TO 250
                                                                           01900
      NSTEPS=0
                                                                            01910
      GO TO 300
                                                                            01920
C
                                                                            01930
C
        *** NSTEPS ***
                                                                            01940
                                                                            01950
  250 CALL QUESTB (*2200,0,'NSTEPS',6,NSTEPS,'I2 ',1,50,0)
                                                                            01960
  300 IF (IOPT(3).EQ.3.OR.IOPT(3).EQ.4.OR.IOPT(3).EQ.6)GO TO 301
                                                                            01970
      NCOMPS=0
                                                                            01980
      GO TO 400
                                                                            01990
C
                                                                            02000
C
        *** NCOMPS ***
                                                                            02010
                                                                            02020
  301 CALL QUESTB (*2300,0,'NCOMPS',6,NCOMPS,'I2 ',1,100,0)
                                                                            02030
  400 IF (IOPT(3).EQ.2) GO TO 430
                                                                            02040
      VO=' 0.0'
                                                                            02050
      GO TO 500
                                                                            02060
C
                                                                            02070
C
        *** VO ***
                                                                            02080
                                                                            02090
  430 CALL QUESTA (*2400,0,'VO',2,VO,'A10 ',1,0)
                                                                            02100
  500 WRITE (J,9110)
                                                                           02110
      WRITE (J,9991) (IOPT(I), I=1,10), NSTEPS, NCOMPS, VO
                                                                            02120
      IF (OK()) GO TO 92
                                                                            02130
                                                                           02140
      NSTART= 1
      GO TO 91
                                                                            02150
C
                                                                           02160
C
          SET FLAGS FOR THE DATA BLOCKS THAT ARE REQUIRED.
                                                                           02170
C
                                                                            02180
   92 IF (IOPT(3).EQ.5.OR.IOPT(3).EQ.6)IREQUIRED(4)=1
                                                                           02190
      IF (IOPT(2).EQ.2)IREQUIRED(9)=1
                                                                            02200
      IF (IOPT(3).GE.1.AND.IOPT(3).LE.4)IREQUIRED(7)=1
                                                                           02210
      IF (IOPT(3).EQ.3.OR.IOPT(3).EQ.4.OR.IOPT(3).EQ.6)IREQUIRED(8)=1
                                                                           02220
```

```
IF (IOPT(4).NE.O)IREQUIRED(6)=1
                                                                           02230
C
                                                                           02240
C
          KEYWORD DATA BLOCKS.
                                                                          02250
          THE PROGRAM IS DESIGNED SO THAT THE DATA BLOCKS CAN BE
                                                                          02260
C
          ENTERED IN ANY ORDER. CERTAIN DATA BLOCKS, SUCH AS
                                                                           02270
          'ELEMENTS', 'SPECIES', 'MINERALS', ETC., CAN BE CALLED
C
                                                                          02280
C
          UPON MORE THAN ONCE. IN THAT CASE, NEW ELEMENTS, SPECIES,
                                                                           02290
С
          MINERALS, ETC., WILL JUST BE ATTACHED TO THE END OF THE
                                                                           02300
С
          DATA BLOCK. AT THE END OF THE SIMULATION, THE PROGRAM
                                                                          02310
С
          RE-ARRANGES THE DATA BLOCKS AND PRINTS THEM IN A PREFERRED
                                                                          02320
С
                                                                          02330
С
                                                                           02340
C
                                                                          02350
          IF YOU ACCIDENTALLY ENTERED A DATA BLOCK THAT YOU DO NOT
С
          WISH TO USE, ENTER 'EXIT' AS THE FIRST COMMAND AFTER YOU'VE
                                                                           02360
C
          ENTERED THE DATA BLOCK NAME.
                                                                           02370
C
                                                                           02380
  531 ISUB=1
                                                                           02390
  621 WRITE (J,601)
                                                                           02400
  601 FORMAT (/,19('*'),/,'KEYWORD DATA BLOCKS',/,19('*'),//)
                                                                           02410
      IF (IOPEN.EQ.O)GO TO 604
                                                                           02420
  612 READ (13,9001,END=608,ERR=650) KEYWORD(ISUB),NSOL
                                                                           02430
      DO 609 I=1.11
                                                                          02440
  609 IF (KEYWORD(ISUB).EQ.SUB(I))GO TO 615
                                                                           02450
  650 GO TO 612
                                                                           02460
                                                                           02470
C
          IF THE KEYWORD DATA BLOCKS ARE NOT ALLOWED, DON'T BOTHER
                                                                           02480
C
          TO ASK THE USER.
                                                                           02490
                                                                           02500
  615 IF (I.EQ.6.AND.IOPT(4).EQ.0)GO TO 612
                                                                           02510
      IF (I.EQ.7.AND.(IOPT(3).EQ.0.OR.IOPT(3).EQ.5.OR.IOPT(3).EQ.6))
                                                                           02520
     1GO TO 612
                                                                           02530
      IF (I.EQ.8.AND.NCOMPS.EQ.0)GO TO 612
                                                                           02540
      IF (I.EQ.9.AND.IOPT(2).NE.2)GO TO 612
                                                                           02550
      WRITE (J,613)
                                                                           02560
  613 FORMAT (/,'KEYWORD:')
                                                                           02570
      IF (I.EQ. 1)GO TO 660
                                                                           02580
      WRITE (J,9050)KEYWORD(ISUB)
                                                                           02590
      GO TO 670
                                                                           02600
  660 WRITE (J.9001)KEYWORD(ISUB), NSOL
                                                                           02610
  670 CALL REF (0,1,2)
                                                                           02620
      IF (I.NE. 11)GO TO 120
                                                                           02630
      IOPEN=0
                                                                           02640
  120 IF (JOPTION.EQ. 1)GO TO 620
                                                                           02650
      JOPTION=0
                                                                           02660
      IF (I.EQ. 11) GO TO 604
                                                                           02670
      GO TO 621
                                                                           02680
  608 IOPEN=0
                                                                           02690
      GO TO 531
                                                                           02700
  604 WRITE (J,603)
                                                                           02710
  603 FORMAT (/, 'ENTER KEYWORD.')
                                                                           02720
      READ (J,20) LINE
                                                                           02730
      READ (LINE, *, ERR=622) IHELP
                                                                           02740
      IF (IHELP.GT.11.OR.IHELP.LT.1)GO TO 4200
                                                                           02750
C
                                                                           02760
C
          HE ASKED FOR HELP..
                                                                           02770
C
                                                                           02780
```

```
GO TO (4148,4150,4146,4152,4154,4156,4158,4160,4162,4164,4166),
                                                                           02790
     1 I HELP
                                                                           02800
  622 READ (LINE, 9050, ERR=4200) KEYWORD(ISUB)
                                                                           02810
      READ (LINE, 810, ERR=820) NSOL
                                                                           02820
                                                                           02830
  810 FORMAT (9X, I1)
      GO TO 830
                                                                           02840
  820 NSOL=0
                                                                           02850
                                                                           02860
  830 DO 610 I=1.11
      IF (KEYWORD(ISUB).EQ.SUBO(I)) GO TO 620
                                                                           02870
      IF (KEYWORD(ISUB).EQ.SUB(I)) GO TO 620
                                                                           02880
                                                                           02890
  610 CONTINUE
      GO TO 4200
                                                                           02900
C
                                                                           02910
C
                                                                           02920
          AH, A LEGITIMATE KEYWORD...
C
                                                                           02930
  620 IF(JSUB(I).EQ.1.AND.IMORE(I).EQ.0)GO TO 630
                                                                           02940
                                                                           02950
      JSUB(I)=1
      GO TO 640
                                                                           02960
  630 WRITE (J,635)
                                                                           02970
  635 FORMAT (/,'YOU HAVE ALREADY USED IT ONCE'/)
                                                                           02980
      GO TO 621
                                                                           02990
  640 WRITE (J.639) KEYWORD(ISUB)
                                                                           03000
  639 FORMAT (//,8('-'),/,A8,/,8('-'),//)
                                                                           03010
                                                                           03020
      GO TO (1700,1725,1750,3260,3250,3270,3280,3900,6000,7000,950), I
                                                                           03030
                                                                           03040
C
                                                                           03050
C
                                                                           03060
С
   SOLUTION DATA BLOCK
                                                                           03070
C
                                                                           03080
C
                                                                           03090
 1700 CONTINUE
                                                                           03100
      ISOL=ISOL+1
                                                                           03110
      IF (ISOL.LE.2) GO TO 1510
                                                                           03120
      WRITE (J. 1300)
                                                                           03130
 1300 FORMAT ('ONLY 2 SOLUTIONS ARE ALLOWED. ')
                                                                           03140
      ISOL=2
                                                                           03150
      GO TO 531
                                                                           03160
 1510 IF (IOPEN.EQ.O.AND.NSOL.EQ.O)GO TO 1739
                                                                           03170
      IF (NSOL.EQ.1.OR.NSOL.EQ.2) GO TO 1500
                                                                           03180
      JOPTION=0
                                                                           03190
      GO TO 1492
                                                                           03200
 1500 IF (ISOL.NE.2.OR.NSOL.NE.NSOLUTION(1)) GO TO 1501
                                                                           03210
      WRITE (J, 1502) NSOL
                                                                           03220
 1502 FORMAT ('SOLUTION #', I1, 'HAS ALREADY BEEN ENTERED.')
                                                                           03230
      ISOL=1
                                                                           03240
      GO TO 531
                                                                           03250
 1501 NSOLUTION(ISOL)=NSOL
                                                                           03260
      IF (IOPEN.EQ.O) GO TO 1400
                                                                           03270
      WRITE (J, 1736) SUB(I)
                                                                           03280
 1736 FORMAT (/,A8, 'CARD:')
                                                                           03290
      CALL REF (2,1,0)
                                                                           03300
      READ (JLINE(1), 1731) HEAD(ISOL)
                                                                           03310
 1731 FORMAT (A80)
                                                                           03320
      READ (JLINE(2),9003) NTOTS(ISOL), IALK(ISOL), IUNITS(ISOL), PH
                                                                           03330
     1 (ISOL), PE(ISOL), TEMP(ISOL), SDENS(ISOL)
                                                                           03340
```

```
IF (NTOTS(ISOL).EQ.0)GO TO 1734
                                                                            03350
      CALL REF(1,1,0)
                                                                            03360
      READ (JLINE(1),9004) (LT(ISOL,M),DTOT(ISOL,M),M=1,5)
                                                                            03370
                                                                            03380
      IF (NTOTS(ISOL).LE.5)GO TO 1734
      LLINE=INT((NTOTS(ISOL)-1)/5)
                                                                            03390
      DO 1738 KLINE=1, LLINE
                                                                            03400
      CALL REF (1,1,0)
                                                                            03410
 1738 READ (JLINE(1),9004) (LT(ISOL,M),DTOT(ISOL,M),M=KLINE*5+1,
                                                                            03420
     1 (KLINE+1)*5)
                                                                            03430
 1734 CALL REF (0,1,1)
                                                                            03440
      IF (JOPTION.EQ. 1. AND. IALK(ISOL).GT.O)GO TO 1752
                                                                            03450
      IF (JOPTION.EQ.1)GO TO 531
                                                                            03460
C
                                                                            03470
C
        *** SOLUTION NUMBER ***
                                                                            03480
C
                                                                            03490
 1739 CALL QUESTB (*1492,0,'SOLUTION NUMBER', 15, NSOLUTION(ISOL),'I1
                                                                            03500
     1, 1, 2, 1)
                                                                            03510
      IF (.NOT.EXIT)GO TO 1730
                                                                            03520
      JSUB(1)=0
                                                                            03530
 1753 GO TO 531
                                                                            03540
 1730 IF (ISOL.NE.2.OR.NSOLUTION(2).NE.NSOLUTION(1)) GO TO 1732
                                                                            03550
      WRITE (J.1502) NSOLUTION(2)
                                                                            03560
      GO TO 1739
                                                                            03570
 1732 WRITE (J. 1901) NSOLUTION(ISOL)
                                                                            03580
 1001 FORMAT (/, 'SOLUTION', 1X, I1)
                                                                            03590
      IF (.NOT.OK()) GO TO 1739
                                                                            03600
 1400 IREQUIRED(1)=0
                                                                            03610
                                                                            03620
        *** HEAD ***
C
                                                                            03630
C
                                                                            03640
      IF (JOPTION.EQ.2) NFLAG=1
                                                                            03650
 1488 CALL QUESTA (*4300,0,'HEAD',4,HEAD(ISOL),'A80 ',0,0)
                                                                            03660
      IF (HEAD(ISOL).EQ.'*') HEAD(ISOL)='Pure water'
                                                                            03670
      WRITE (J,9110)
                                                                            03680
      WRITE (J. 1731) HEAD(ISOL)
                                                                            03690
      IF (.NOT.OK()) GO TO 1488
                                                                            03700
      IF (HEAD(ISOL).NE.'Pure water') GO TO 1713
                                                                            03710
      NTOTS (ISOL) = 0
                                                                            03720
      IALK(ISOL)=0
                                                                            03730
      IUNITS(ISOL)=0
                                                                            03740
      PH(ISOL)='7.0'
                                                                            03750
      PE(ISOL)=' 4.0'
                                                                            03760
      TEMP(ISOL)=' 25.0'
                                                                            03770
                                                                            03780
      GO TO 1719
                                                                            03790
C
C
        *** NTOTS ***
                                                                            03800
                                                                            03810
 1713 CALL QUESTB (*4320,0,'NTOTS',5,NTOTS(ISOL),'I2 ',0,100,0)
                                                                            03820
 1714 IF (NTOTS(ISOL).NE.0)GO TO 1727
                                                                            03830
      IALK(ISOL)=0
                                                                            03840
      IUNITS(ISOL)=0
                                                                            03850
      GO TO 1718
                                                                            03860
                                                                            03870
C
        *** I VTK ***
C
                                                                            03880
                                                                            03890
C
 1727 CALL QUESTB (*4340,0,'IALK',4,IALK(ISOL),'I3 ',0,0,0)
                                                                            03900
```

```
03910
      JUMP=0
                                                                            03920
      IF (IALK(ISOL)) 4340, 1715, 1708
 1708 1F (IALK(ISOL).GT.30.OR.IALK(ISOL).LT.4) GO TO 4340
                                                                            03930
C
                                                                            03940
        *** TUNITS ***
C
                                                                            03950
                                                                            03960
C
 1715 CALL QUESTB (*4360,0,'IUNITS',6,IUNITS(ISOL),'I2'',0,4,0)
                                                                            03970
C
                                                                            03980
C
        *** pH ***
                                                                            03990
C
                                                                            04000
                                                                            04010
 1718 CALL QUESTA (*4380,0,'PH',2,PH(ISOL),'A10 ',1,0)
                                                                            04020
        *** PF ***
                                                                            04030
C
C
                                                                            04040
                                                                            04050
 1723 PE(ISOL)=' 4.0
C
                                                                            04060
С
        *** TEMP ***
                                                                            04070
                                                                            04080
 1724 CALL QUESTA (*4420,0,'TEMP',4,TEMP(ISOL),'A10 ',1,0)
                                                                            04090
      IF (IUNITS(ISOL).EQ.1.OR.IUNITS(ISOL).EQ.2) GO TO 1482
                                                                            04100
                                                                            04110
 1719 SDENS(ISOL)=' 1.0'
      GO TO 1490
                                                                            04120
C
                                                                            04130
С
        *** SDENS ***
                                                                            04140
C
                                                                            04150
 1482 CALL QUESTA (*4440,0,'SDENS',5,SDENS(ISOL),'A10 ',1,0)
                                                                            04160
                                                                            04170
 1490 WRITE (J.9110)
      WRITE (J,9003) NTOTS(ISOL), IALK(ISOL), IUNITS(ISOL), PH(ISOL)
                                                                            04 180
                                                                            04190
     1, PE(ISOL), TEMP(ISOL), SDENS(ISOL)
      IF (.NOT.OK()) GO TO 1713
                                                                            04200
      JF (IALK(ISOL).EQ.0)GO TO 1726
                                                                            04210
 1752 WRITE (J. 1006)
                                                                            04220
 1006 FORMAT (/, 'HAS THE APPROPRIATE CARBON ELEMENT-CARD BEEN',
                                                                            04230
                                                                            04240
     1' CONSTRUCTED?')
                                                                            04250
      JUMP=1
                                                                            04260
      IF (.NOT.YN()) GO TO 1728
      GO TO (1726, 1753, 1726, 1726), JOPTION+1
                                                                            04270
C
                                                                            04280
C
          ADD AN EXTRA ELEMENT CARD FOR HIM...
                                                                            04290
C
                                                                            04300
                                                                            04310
 1728 WRITE (J, 1709)
 1709 FORMAT (/.'WHAT IS THE GRAM EQUIVALENT WEIGHT (GRAMS/EQUIVALENT'
                                                                            04320
     1,') OF THE',/,'CHEMICAL SPECIES IN WHICH THE ALKALINITY IS',
                                                                            04330
                                                                            04340
     2' REPORTED?')
      WRITE (J, 1710)
                                                                            04350
 1710 FORMAT (//, 'FOR EXAMPLE:',/,19X,'CACO3
                                                   50.0446 G/EQ',/,19X
                                                                            04360
     1, 'HCO3- 61.0171 G/EQ', /, 19X, 'CO3--
                                                   30.0046 G/EQ.',//)
                                                                            04370
      READ (J, 1731) LINE
                                                                            04380
                                                                            04390
      READ (LINE, *, ERR= 1728) EQ
                                                                            04400
      EQUIVWT=LINE(1:8)
                                                                            04410
      JSUB(2)=2
                                                                            04420
      WRITE (J, 1712)
 1712 FORMAT (//, 'ELEMENTS DATA BLOCK WILL BE CONSTRUCTED AUTOMATICALLY' 04430
                                                                            04440
                                                                            04450
      IF (IELEMENT.LT.27)GO TO 1004
                                                                            04460
      WRITE (J, 1002)
```

```
1002 FORMAT (1X,52('*'),/,1X,'WARNING: NUMBER OF ELEMENTS EXCEEDS '.
                                                                            04470
     1'MAXIMUM POSSIBLE.',/,1X,'CARBON CARD IS DELETED.',/,1X,52('*')/)
                                                                            04480
      GO TO (1726, 1753), JOPTION+1
                                                                            04490
 1004 IELEMENT=IELEMENT+1
                                                                            04500
                                                                            04510
      TNAME (IELEMENT) = 'C'
                                                                            04520
      NELT(IELEMENT) = IALK(ISOL)
                                                                            04530
      TGFW(IELEMENT) = EOUI VWT
                                                                            04540
      GO TO 1600
 1601 IF (JOPTION.EQ.1)GO TO 1753
                                                                            04550
 1726 IF (IUNITS(ISOL).GE.2.AND.IUNITS(ISOL).LE.3.AND.IELEMENT.EQ.0)
                                                                            04560
     1 IREQUIRED(2)=1
                                                                            04570
      IF (NTOTS(ISOL).EQ.0)GO TO 531
                                                                            04580
 1320 M=1
                                                                            04590
                                                                            04600
 1310 N2=1
C
                                                                            04610
C
        *** 17 ***
                                                                            04620
C
                                                                            04630
 1326 CALL QUESTB (*4100,M,'LT',2,LT(ISOL,M),'I4 ',1,10000,2)
                                                                            04640
      IF (.NOT.LIST)GO TO 1057
                                                                            04650
                                                                            04660
 1361 CALL LISTM
      GO TO (1326, 1356), N2
                                                                            04670
 1057 N2=2
                                                                            04680
C
                                                                            04690
С
        *** DTOT ***
                                                                            04700
C
                                                                            04710
 1356 CALL QUESTA (*4100,M,'DTOT',4,DTOT(ISOL,M),'A11 ',1,2)
                                                                            04720
      IF (LIST)GO TO 1361
                                                                            04730
      M=M+1
                                                                            04740
                                                                            04750
      IF (M.LE.NTOTS(ISOL)) GO TO 1310
      WRITE (J,9110)
                                                                            04760
      WRITE (J.9004) (LT(ISOL,M),DTOT(ISOL,M),M=1,NTOTS(ISOL))
                                                                            04770
      IF (.NOT.OK())GO TO 1320
                                                                            04780
      GO TO 531
                                                                            04790
 1725 CONTINUE
                                                                            04800
C
                                                                            04810
C
                                                                            04820
C
                                                                            04830
     ELEMENTS DATA BLOCK
C
                                                                            04840
                                                                            04850
                                                                            04860
      IELEMENT=IELEMENT+1
      IF (IOPEN.EQ.0)GO TO 1729
                                                                            04870
                                                                            04880
 1536 CALL REF (1,0,0)
      IF (JOPTION.EQ.0)GO TO 1530
                                                                            04890
                                                                            04900
      WRITE (J, 1736) SUB(I)
      WRITE (J, 1731) JLINE(1)
                                                                            04910
      CALL REF (0,0,3)
                                                                            04920
      GO TO (1530,1531,1531,1536), JOPTION+1
                                                                            04930
 1531 READ (JLINE(1),9102) TNAME(IELEMENT), NELT(IELEMENT), TGFW(IELEMENT) 04940
      IREQUIRED(2)=0
                                                                            04950
      IF (JOPTION.EQ.1) GO TO 1600
                                                                            04960
C
                                                                            04970
        *** TNAME ***
C
                                                                            04980
                                                                            04990
 1729 CALL QUESTA (*4102,0,'TNAME',5,TNAME(IELEMENT),'A8 ',0,3)
                                                                            05000
      IF (.NOT.LIST)GO TO 1549
                                                                            05010
      CALL LISTM
                                                                            05020
```

```
GO TO 1729
                                                                            05030
 1549 IF (.NOT.EXIT)GO TO 1550
                                                                            05040
                                                                            05050
 1530 IELEMENT=IELEMENT-1
      IF (IELEMENT.EQ.0)JSUB(2)=0
                                                                            05060
      GO TO 531
                                                                            05070
                                                                            05080
 1550 IREQUIRED(2)=0
                                                                            05090
C
        *** NELT ***
                                                                            05100
C
                                                                            05110
      CALL QUESTB (*4104,0,'NELT',4,NELT(IELEMENT),'I2 ',4,30,2)
                                                                            05120
      IF (.NOT.LIST) GO TO 1558
                                                                            05130
                                                                            05 140
      CALL LISTM
      GO TO 1550
                                                                            05150
 1558 DO 1547 M=1.IELEMENT-1
                                                                            05 160
 1547 IF (NELT(IELEMENT).EQ.NELT(M))GO TO 1548
                                                                            05170
      GO TO 1570
                                                                            05180
 1548 WRITE (J.1551) NELT(M)
                                                                            05190
 1551 FORMAT (/, 'WARNING: ELEMENT #', 12, ' IS ALREADY ENTERED.'/)
                                                                            05200
                                                                            05210
C
        *** TGFW ***
                                                                            05220
C
                                                                            05230
 1570 CALL QUESTA (*4106,0,'TGFW',4,TGFW(IELEMENT),'A10 ',1,2)
                                                                            05240
      IF (.NOT.LIST) GO TO 1580
                                                                            05250
      CALL LISTM
                                                                            05260
      GO TO 1570
                                                                            05270
 1580 WRITE (J,9110)
                                                                            05280
      WRITE (J.9102) TNAME(IELEMENT).NELT(IELEMENT).TGFW(IELEMENT)
                                                                            05290
      IF (.NOT.OK()) GO TO 1729
                                                                            05300
C
                                                                            05310
C
          KEEP TRACK OF ELEMENTS AND SPECIES
                                                                            05320
                                                                            05330
 1600 IF(ICHECK(2,NELT(IELEMENT)).EQ.1)GO TO 1557
                                                                            05340
      ICHECK(1,NELT(IELEMENT))=1
                                                                            05350
      GO TO 1575
                                                                            05360
 1557 ICHECK(2, NELT(IELEMENT))=0
                                                                            05370
                                                                            05380
 1575 IF (I.EQ.1)GO TO 1601
      IF (IELEMENT.EQ.27) GO TO 531
                                                                            05390
      IF (IOPEN.NE.O)GO TO 1725
                                                                            05400
      WRITE (J. 1573)
                                                                            05410
 1573 FORMAT (/,'MORE ELEMENTS?')
                                                                            05420
      IF (YN()) GO TO 1725
                                                                            05430
      GO TO 531
                                                                            05440
 1750 CONTINUE
                                                                            05450
                                                                            05460
C
                                                                            05470
C
   SPECIES DATA BLOCK
                                                                            05480
C
                                                                            05490
                                                                            05500
      ISPECIE=ISPECIE+1
                                                                            05510
      IF (IOPEN.EQ.O)GO TO 1590
                                                                            05520
 1523 CALL REF (1,0,0)
                                                                            05530
      IF (JOPTION.EQ.0)GO TO 1529
                                                                            05540
      WRITE (J, 1736)SUB(I)
                                                                            05550
      WRITE (J, 1731)JLINE(1)
                                                                            05560
      READ (JLINE(1), 9202) NI(ISPECIE)
                                                                            05570
      CALL REF (3.1.3)
                                                                            05580
```

```
GO TO (1521,1521,1523), JOPTION
                                                                            05590
      CALL REF (0.0.2)
                                                                            05600
      IF (JOPTION.EQ.2) GO TO 1523
                                                                            05610
      ISDEL(ISPECIE)=1
                                                                            05620
      GO TO 1750
                                                                            05630
 1521 READ (JLINE(1),9203) SNAME(ISPECIE),NSP(ISPECIE),KFLAG
                                                                            05640
     1(ISPECIE), GFLAG(ISPECIE), ZSP(ISPECIE), THSP(ISPECIE), DHA(ISPECIE)
                                                                            05650
     2, ADHSP(ISPECIE, 1), ADHSP(ISPECIE, 2), ALKSP(ISPECIE)
                                                                            05660
      READ (JLINE(2),9204) LKTOSP(ISPECIE), DHSP(ISPECIE),
                                                                            05670
     1(ASP(ISPECIE, MMM), MMM=1.5)
                                                                            05680
      READ (JLINE(3), 9205) (LSP(ISPECIE, MMM), CSP(ISPECIE, MMM),
                                                                            05690
                                                                            05700
     1MMM=1.NSP(ISPECIE))
      IF (JOPTION.EQ.1) GO TO 1670
                                                                            05710
C
                                                                            05720
C
                                                                            05730
                                                                            05740
 1590 CALL QUESTB (*4110,0,'I',1,NI(ISPECIE),'I3 ',4.250.1)
                                                                            05750
      IF (.NOT.EXIT) GO TO 1654
                                                                            05760
 1529 ISPECIE=ISPECIE-1
                                                                            05770
      IF (ISPECIE.EQ.0)JSUB(3)=0
                                                                            05780
      IF (IOPEN.NE.O)GO TO 531
                                                                            05790
      GO TO 1933
                                                                            05800
 1654 WRITE (J.9110)
                                                                            05810
      WRITE (J,9202) NI (ISPECIE)
                                                                            05820
      IF (.NOT.OK()) GO TO 1590
                                                                            05830
      IF(ISDEL(ISPECIE).NE.1) GO TO 1660
                                                                            05840
                                                                            05850
      IF (JOPTION.EQ.2)GO TO 1750
      GO TO 1934
                                                                            05860
C
                                                                            05870
С
        *** SNAME ***
                                                                            05880
                                                                            05890
 1660 CALL QUESTA (*4112,0,'SNAME',5,SNAME(ISPECIE),'A8 ',0,0)
                                                                            05900
C
                                                                            05910
C
                                                                            05920
          IS IT A MASTER SPECIE....
C
                                                                            05930
 1670 IMASTER=0
                                                                            05940
      IF (NI(ISPECIE).LE.30.AND.NI(ISPECIE).GT.3.AND.ISDEL(ISPECIE)
                                                                            05950
     1.NE.1)IMASTER=1
                                                                            05960
      IF (JOPTION.EQ. 1. AND. IMASTER. EQ. 0)GO TO 1750
                                                                            05970
      IF (IMASTER.EQ.O.OR.(NFLAG.EQ.1.AND.JOPTION.NE.2))GO TO 1676
                                                                            05980
C
                                                                            05990
С
          KEEP TRACK OF ELEMENTS AND SPECIES ...
                                                                            06000
C
                                                                            06010
      IF (ICHECK(1,NI(ISPECIE)).EQ.1)GO TO 1679
                                                                            06020
      ICHECK(2,NI(ISPECIE))=1
                                                                            06030
      GO TO 1595
                                                                            06040
                                                                            06050
 1679 ICHECK(1.NI(ISPECIE))=0
                                                                            06060
 1595 IF (JOPTION.EQ.1)GO TO 1750
                                                                            06070
С
          IF IT IS A MASTER SPECIES, A LOT OF VARIABLES CAN BE
                                                                            06080
C
          DETERMINED WITHOUT ASKING THE USER...
                                                                            06090
C
                                                                            06100
                                                                            06110
      NSP(ISPECIE)=1
                                                                            06120
      KFLAG(ISPECIE)=0
                                                                            06130
      CSP(ISPECIE, 1) = '1.0'
                                                                            06 140
      LSP(ISPECIE, 1)=NI(ISPECIE)
```

```
LKTOSP(ISPECIE)=' 0.0'
                                                                             06150
                                                                             06160
      DHSP(ISPECIE)=' 0.0'
      DO 1678 NII=1,5
                                                                             06170
                                                                             06180
 1678 ASP(ISPECIE.NII)=' 0.0'
                                                                             06190
      GO TO 1690
C
                                                                             06200
        *** NSP ***
                                                                             06210
C.
C
                                                                             06220
 1676 CALL QUESTB (*4114,0,'NSP',3,NSP(ISPECIE),'I3 ',0,6,0)
                                                                             06230
                                                                             06240
C
С
        *** KFLAG ***
                                                                             06250
                                                                             06260
C
 1680 CALL QUESTB (*4116,0,'KFLAG',5,KFLAG(ISPECIE),'I2 ',0,1,0)
                                                                             06270
                                                                             06280
C
        *** GFLAG ***
C
                                                                             06290
                                                                             06300
C
 1690 CALL QUESTB (*4118,0,'GFLAG',5,GFLAG(ISPECIE),'I2 ',0,1,0)
                                                                             06310
С
                                                                             06320
С
        *** 7.SP ***
                                                                             06330
C
                                                                             06340
 1780 CALL QUESTA (*4120,0,'ZSP',3,ZSP(ISPECIE),'A10 ',1,0)
                                                                             06350
                                                                             06360
C
С
        *** THSP ***
                                                                             06370
                                                                             06380
C
 1790 CALL QUESTA (*4122,0,'THSP',4,THSP(ISPECIE),'A10 ',1,0)
                                                                             06390
                                                                             06400
C
        *** DHA ***
C
                                                                             06410
C
                                                                             06420
 1880 CALL QUESTA (*4124,0,'DHA',3,DHA(ISPECIE),'A10 ',1,0)
                                                                             06430
      IF (GFLAG(ISPECIE).EQ.1)GO TO 1891
                                                                             06440
      ADHSP(ISPECIE, 1) = ' 0.0'
                                                                             06450
      ADHSP(ISPECIE,2)=' 0.0'
                                                                             06460
      GO TO 1740
                                                                             06470
C
                                                                             06480
C
        *** ADHSP ***
                                                                             06490
C
                                                                             06500
                                                                             06510
 1891 M=1
 1892 CALL QUESTA (*1897, M, 'ADHSP', 5, ADHSP(ISPECIE, M), 'A10', 1,0)
                                                                             06520
      M=M+1
                                                                             06530
      IF (M.EQ.3)GO TO 1740
                                                                             06540
      GO TO 1892
                                                                             06550
 1897 GO TO (4126,4128), M
                                                                             06560
C
                                                                             06570
        *** ALKSP ***
C
                                                                             06580
                                                                             06590
 1740 CALL QUESTA (*4130,0,'ALKSP',5,ALKSP(ISPECIE),'A10 ',1,0)
                                                                             06600
      WRITE (J.9110)
                                                                             06610
      WRITE (J,9203)SNAME(ISPECIE),NSP(ISPECIE),KFLAG(ISPECIE),
                                                                             06620
     1GFLAG(ISPECIE), ZSP(ISPECIE), THSP(ISPECIE), DHA(ISPECIE),
                                                                             06630
                                                                             06640
     2ADHSP(ISPECIE, 1), ADHSP(ISPECIE, 2), ALKSP(ISPECIE)
      IF (.NOT.OK()) GO TO 1660
                                                                             06650
                                                                             06660
 1960 IF(IMASTER.EQ.O)GO TO 1967
                                                                             06670
      GO TO 1930
C
                                                                             06680
С
        *** LKTOSP ***
                                                                             06690
C
                                                                             06700
```

```
1967 CALL QUESTA (*4132.0, 'LKTOSP', 6, LKTOSP(ISPECIE), 'A10', 1, 0)
                                                                            06710
C
                                                                            06720
C
         *** DHSP ***
                                                                            06730
C
                                                                            06740
 1970 CALL QUESTA (*4136,0,'DHSP',4,DHSP(ISPECIE),'A10 ',1,0)
                                                                            06750
      IF (KFLAG(ISPECIE).EQ.1)GO TO 1986
                                                                            06760
C
                                                                            06770
C
        *** ASP ***
                                                                            06780
                                                                            06790
                                                                            06800
      DO 1988 K=1.5
                                                                            06810
 1988 ASP(ISPECIE,K)=' 0.0'
      GO TO 1990
                                                                            06820
 1986 K=1
                                                                            06830
 1987 CALL QUESTA (*4138,K,'ASP',3,ASP(ISPECIE,K),'A12 ',1,0)
                                                                            06840
                                                                            06850
      K=K+1
                                                                            06860
      IF (K.LT.6)GO TO 1987
                                                                            06870
 1990 WRITE (J,9110)
      WRITE (J,9204) LKTOSP(ISPECIE), DHSP(ISPECIE), (ASP(ISPECIE, 18),
                                                                            06880
                                                                            06890
                                                                            06900
      IF (.NOT.OK()) GO TO 1960
 1910 K=1
                                                                            06910
      IF (NSP(ISPECIE).EQ.0)GO TO 1930
                                                                            06920
                                                                            06930
 1912 K2=1
C
                                                                            06940
C
        *** LSP, CSP ***
                                                                            06950
C
                                                                            06960
 1915 IF (K2.EQ.1) CALL QUESTB (*4142,K,'LSP',3,LSP(ISPECIE,K),'I3 ',1
                                                                            06970
                                                                            06980
     1,30,2)
      IF (K2.EQ.2) CALL QUESTA (*4144,K,'CSP',3,CSP(ISPECIE,K),'A7',1
                                                                            06990
                                                                            07000
      IF (.NOT.LIST)GO TO 1922
                                                                            07010
      CALL LISTM
                                                                            07020
      GO TO 1915
                                                                            07030
 1922 IF (K2.E0.2) GO TO 1923
                                                                            07040
      K2=2
                                                                            07050
      GO TO 1915
                                                                            07060
 1923 K=K+1
                                                                            07070
      IF (K.GT.NSP(ISPECIE)) GO TO 1940
                                                                            07080
      GO TO 1912
                                                                            07090
 1940 WRITE (J,9110)
                                                                            07100
      WRITE (J,9205)(LSP(ISPECIE,MM),CSP(ISPECIE,MM),MM=1,NSP(ISPECIE))
                                                                            07110
                                                                            07120
      IF (.NOT.OK())GO TO 1910
 1930 IF (IOPEN.NE.O)GO TO 1750
                                                                            07130
      WRITE (J, 1931)
                                                                            07140
 1931 FORMAT (/, 'MORE SPECIES?')
                                                                            07150
      IF (YN())GO TO 1750
                                                                            07160
 1933 WRITE (J, 1932)
                                                                            07170
 1932 FORMAT (/, 'ANY SPECIES TO DELETE?')
                                                                            07180
 1936 IF (.NOT.YN())GO TO 531
                                                                            07190
      ISDEL(ISPECIE+1)=1
                                                                            07200
      JSUB(3)=1
                                                                            07210
      GO TO 1750
                                                                            07220
 1934 WRITE (J. 1935)
                                                                            07230
 1935 FORMAT (/, 'MORE SPECIES TO DELETE?')
                                                                            07240
      GO TO 1936
                                                                            07250
                                                                            07260
C
```

```
C
                                                                              07270
С
                                                                              07280
      MINERALS DATA BLOCK
C
                                                                              07290
C
                                                                              07300
 3260 CONTINUE
                                                                              07310
                                                                              07320
      IF (IMINO.EQ.O.OR.IOPEN.NE.O)GO TO 3100
C
                                                                              07330
C
          MINERAL DATA AVAILABLE...
                                                                              07340
C
                                                                              07350
                                                                              07360
      WRITE (J.3002)
 3002 FORMAT (/, 'PRE-CONSTRUCTED MINERAL DATA ARE AVAILABLE.'/,
                                                                              07370
     1'DO YOU WISH TO HAVE ANY OF THEM?')
                                                                              07380
      IF (.NOT.YN())GO TO 3100
                                                                              07390
C
                                                                              07400
C
           PRINT THE LIST OF MINERALS.....
                                                                              07410
                                                                              07420
 3004 WRITE (J.3003)(K.MNAMEO(K), K=1, IMINO)
                                                                              07430
 3003 FORMAT (/20(1X,5(13,1X,A8,2X,:)/))
                                                                              07440
 3021 WRITE (J.3005)
                                                                              07450
 3005 FORMAT (/, 'ENTER THE INDEX NUMBER OF MINERAL. (TYPE <STOP> TO'
                                                                              07460
     1.' EXIT)')
                                                                              07470
      READ (J.1731) LINE
                                                                              07480
      IF (LINE(1:4).EQ.'STOP'.OR.LINE(1:4).EQ.'stop') GO TO 3010
                                                                              07490
      READ (LINE, *, ERR=3004) INDEX
                                                                              07500
      IF (INDEX.GT.IMINO.OR.INDEX.LT.1)GO TO 3004
                                                                              07510
      IF (MUSED(INDEX).EQ.1)GO TO 3012
                                                                              07520
      MUSED(INDEX)=1
                                                                              07530
      GO TO 3013
                                                                              07540
 3012 WRITE (J,3014) INDEX
                                                                              07550
 3014 FORMAT (//, 'MINERAL # ', 13, ' HAS ALREADY BEEN ENTERED.'//)
                                                                              07560
      GO TO 3021
                                                                              07570
 3013 IMINERAL(1)=IMINERAL(1)+1
                                                                              07580
      IM=IMINERAL(1)
                                                                              07590
      IREQUIRED(4)=0
                                                                              07600
      MNAME(1,IM)=MNAMEO(INDEX)
                                                                              07610
      NMINO(1,IM)=NMINOO(INDEX)
                                                                              07620
      THMIN(1,IM)=THMINO(INDEX)
                                                                              07630
      LKTOM(1,IM)=LKTOMO(INDEX)
                                                                              07640
      DHMIN(1,IM) = DHMINO(INDEX)
                                                                              07650
      MFLAG(1,IM)=MFLAGO(INDEX)
                                                                              07660
      SIMIN(1,IM)=SIMINO(INDEX)
                                                                              07670
      DO 3006 K2=1,NMINO(1,IM)
                                                                              07680
      LMIN(1, IM, K2) = LMINO(INDEX, K2)
                                                                              07690
 3006 \text{ CMIN}(1, \text{IM}, \text{K2}) = \text{CMINO}(\text{INDEX}, \text{K2})
                                                                              07700
 3015 LFLAG=1
                                                                              07710
      GO TO 3032
                                                                              07720
 3020 DO 3008 K2=1,5
                                                                              07730
 3008 AMIN(1, IM, K2) = AMINO(INDEX, K2)
                                                                              07740
      GO TO 3210
                                                                              07750
 3024 IF (MFLAG(II, IM). EQ. 1) GO TO 3020
                                                                              07760
      DO 3001 K2=1,5
                                                                              07770
 3001 AMIN(1, IM, K2) = BLANK
                                                                              07780
 3000 IF (OK()) GO TO 3016
                                                                              07790
      WRITE (J,3017)
                                                                              07800
 3017 FORMAT ('DO YOU WISH TO CHANGE SIMIN?')
                                                                              07810
                                                                              07820
      IF (.NOT.YN())GO TO 3019
```

```
LFLAG=3
                                                                            07830
                                                                            07840
      GO TO 3167
                                                                            07850
 3009 WRITE (J,3022)
 3022 FORMAT ('DO YOU WISH TO CHANGE ANYTHING ELSE?')
                                                                            07860
      IF (.NOT.YN())GO TO 3015
                                                                           07870
                                                                            07880
 3019 LFLAG=2
                                                                            07890
      GO TO 3102
 3016 LFLAG=0
                                                                            07900
      GO TO 3021
                                                                            07910
                                                                            07920
 3010 WRITE (J,3011)
 3011 FORMAT (/, 'MORE MINERALS TO BE TYPED IN FROM THE TERMINAL?')
                                                                            07930
      IF (.NOT.YN()) GO TO 3061
                                                                            07940
 3100 IF (IOPEN.EQ.0)GO TO 3221
                                                                            07950
                                                                            07960
      IMINERAL(II)=IMINERAL(II)+1
      IM=IMINERAL(II)
                                                                            07970
 3062 CALL REF (1,0,0)
                                                                            07980
                                                                            07990
      IF (JOPTION.NE.O)GO TO 3056
                                                                            08000
 3059 IMINERAL(II)=IMINERAL(II)-1
                                                                            08010
 3061 IF (IMINERAL(II).EQ.0)JSUB(I)=0
      GO TO 531
                                                                            08020
                                                                            08030
 3056 WRITE (J, 1736) SUB(I)
      WRITE (J, 1731)JLINE(1)
                                                                            08040
       READ (JLINE(1),9302)MNAME(II,IM),NMINO(II,IM),THMIN(II,IM)
                                                                            08050
                                                                            08060
     1, LKTOM(II, IM), DHMIN(II, IM), MFLAG(II, IM), SIMIN(II, IM)
      IF (MNAME(II, IM).NE.DELETE)GO TO 3051
                                                                            08070
                                                                            08080
      CALL REF (0,0,2)
      GO TO (3063,3062), JOPTION
                                                                            08090
                                                                            08100
 3063 IDELETE=1
      GO TO 3062
                                                                            08110
 3051 NLINE=2
                                                                            08120
                                                                            08130
      IF (NMINO(II,IM).GT.5)NLINE=3
      IF (MFLAG(II,IM).NE.1)NLINE=NLINE-1
                                                                            08140
                                                                            08150
      CALL REF (NLINE, 1,3)
      READ (JLINE(1),9303)(LMIN(II,IM,MMM),CMIN(II,IM,MMM),MMM=1.5)
                                                                            08160
      IF (NMINO(II.IM).LE.5)GO TO 3054
                                                                            08170
      READ (JLINE(2),9303)(LMIN(II,IM,MMM),CMIN(II,IM,MMM),MMM=6
                                                                            08180
     1,NMINO(II,IM))
                                                                            08190
                                                                            08200
 3054 IF (MFLAG(II, IM).NE.1)GO TO 3057
                                                                            08210
      READ (JLINE(NLINE), 9304) (AMIN(II, IM, MMM), MMM=1,5)
 3057 GO TO (3102,3062), JOPTION-1
                                                                            08220
                                                                            08230
      IREQUIRED(I)=0
                                                                            08240
      GO TO 3100
                                                                            08250
C
C
        *** MNAME ***
                                                                            08260
                                                                            08270
 3221 IMINERAL(II)=IMINERAL(II)+1
                                                                            08280
                                                                            08290
      IM=IMINERAL(II)
                                                                            08300
      LFLAG=0
 3102 CALL QUESTA (*8000,0,'MNAME',5,MNAME(II,IM),'A8 ',0,1)
                                                                            08310
                                                                            08320
      IF (EXIT) GO TO 3059
 3106 IREQUIRED(I)=0
                                                                            08330
                                                                            08340
C
C
        *** NMINO ***
                                                                            08350
                                                                            08360
                                                                            08370
 3110 CALL QUESTB (*8002,0,'NMINO',5,NMINO(II,IM),'I2 ',1,10,0)
                                                                            08380
```

```
C
        *** THMIN ***
                                                                            08390
                                                                            08400
                                                                            08410
 3120 CALL QUESTA (*8004,0,'THMIN',5,THMIN(II,IM),'A10',1,0)
                                                                            08420
С
        *** FKLOW ***
                                                                            08430
                                                                            08440
 3130 CALL QUESTA (*8006,0,'LKTOM',5,LKTOM(II,IM),'A10 ',1,0)
                                                                            08450
                                                                            08460
        *** DHWIN ***
                                                                            08470
C
                                                                            08480
 3140 CALL QUESTA (*8008,0, 'DHMIN',5, DHMIN(II,IM), 'A10',1,0)
                                                                            08490
                                                                            08500
C
        *** MFLAG ***
                                                                            08510
                                                                            08520
C
                                                                            08530
 3150 CALL QUESTB (*8010.0, 'MFLAG', 5, MFLAG(II, IM), 'I1 ',0,1,0)
      IF (LFLAG.EQ.2) GO TO 3032
                                                                            08540
С
                                                                            08550
        *** SIMIN ***
                                                                            08560
C
                                                                            08570
 3167 CALL QUESTA (*8012,0,'SIMIN',5,SIMIN(II,IM),'A10',1,0)
                                                                            08580
                                                                            08590
      IF (LFLAG.EQ.3)GO TO 3009
                                                                            08600
 3032 WRITE (J.9110)
      WRITE (J.9302) MNAME(II,IM),NMINO(II,IM),THMIN(II,IM),LKTOM(II,IM) 08610
     1, DHMIN(II, IM), MFLAG(II, IM), SIMIN(II, IM)
                                                                            08620
                                                                            08630
      IF (LFLAG.EQ.1)GO TO 3187
      IF (LFLAG.EQ.2) LFLAG=4
                                                                            08640
                                                                            08650
      IF (.NOT.OK()) GO TO 3102
                                                                            08660
      IF (LFLAG.EQ.4) NFLAG=1
C
                                                                            08670
        *** LMIN, CMIN ***
                                                                            08680
C
                                                                            08690
                                                                            08700
 3190 K=1
 3192 K2=1
                                                                            08710
 3195 IF (K2.EQ.1) CALL QUESTB (*8014.K,'LMIN',4,LMIN(II,IM,K),'I4 '.O 08720
                                                                            08730
      IF (K2.EQ.2) CALL QUESTA (*8016.K, 'CMIN', 4, CMIN(II, IM, K), 'A11 ',1
                                                                            08740
                                                                            08750
                                                                            08760
      IF (.NOT.LIST)GO TO 3191
                                                                            08770
      CALL LISTM
                                                                            08780
      GO TO 3195
 3191 IF (K2.EQ.2) GO TO 3186
                                                                            08790
                                                                            08800
      K2=2
      GO TO 3195
                                                                            08810
                                                                            08820
 3186 K=K+1
                                                                            08830
      IF (K.LE.NMINO(II,IM)) GO TO 3192
      WRITE (J.9110)
                                                                            08840
 3187 WRITE (J,9303) (LMIN(II,IM,K),CMIN(II,IM,K),K=1,NMINO(II,IM))
                                                                            08850
                                                                            08860
      IF (LFLAG.EQ.1) GO TO 3024
                                                                            08870
      IF (.NOT.OK()) GO TO 3190
      IF(MFLAG(II,IM).EQ.1)GO TO 3201
                                                                            08880
                                                                            08890
      IF (LFLAG.EQ.4) GO TO 3016
                                                                            08900
      IF (IOPEN.NE.O)GO TO 3100
      GO TO 3010
                                                                            08910
                                                                            08920
C
C
                                                                            08930
        *** AMIN ***
С
                                                                            08940
```

```
3201 IF (LFLAG.EO.4) NFLAG=1
                                                                           08950
                                                                           08960
 3200 K=1
 3207 CALL QUESTA (*8018,K,'AMIN',4,AMIN(II,IM,K),'A12 ',1,0)
                                                                           08970
      K=K+1
                                                                           08980
                                                                           08990
      IF (K.LT.6)GO TO 3207
      WRITE (J.9110)
                                                                           09000
 3210 WRITE (J,9304)(AMIN(II,IM,K),K=1,5)
                                                                           09010
                                                                           09020
      IF (LFLAG.EQ.1) GO TO 3000
      IF (.NOT.OK()) GO TO 3200
                                                                           09030
      IF (LFLAG.EQ.4) GO TO 3016
                                                                           09040
      IF (IOPEN.NE.O)GO TO 3100
                                                                           09050
      GO TO 3010
                                                                           09060
 3250 CONTINUE
                                                                           09070
                                                                            09080
C
                                                                           09090
C
                                                                           09100
      LOOK MIN DATA BLOCK
C
                                                                           09110
                                                                           09120
      IF(IMINERAL(2).NE.O.OR.IOPEN.NE.O)GO TO 3100
                                                                           09130
      WRITE (J.3251)
                                                                           09140
 3251 FORMAT (/, 'DO YOU WANT TO DELETE ALL OLD MINERALS?')
                                                                           09150
      IF (YN())IDELETE=1
                                                                           09160
      IF (IDELETE.EQ. 1) JSUB(I)=1
                                                                           09170
C
                                                                           09180
C
          SINCE LOOK MIN IS ALMOST IDENTICAL TO MINERAL.
                                                                           09190
C
          WHY NOT USE MINERAL SECTION AND SAVE SOME SPACE?
                                                                           09200
                                                                           09210
      GO TO 3100
                                                                            09220
 3270 CONTINUE
                                                                           09230
                                                                           09240
C
                                                                           09250
C
      TEMP DATA BLOCK
                                                                            09260
C
                                                                            09270
                                                                            09280
      IF(IOPT(4).EQ.0)GO TO 3320
                                                                            09290
      NTEMP=IOPT(4)
                                                                            09300
      IF (IOPT(4).EQ.3)NTEMP=NSTEPS
                                                                            09310
      IF (IOPEN.EQ.O)GO TO 3308
                                                                           09320
                                                                            09330
      NSTEPS2=IOPT04
                                                                            09340
      IF (IOPTO4.EQ.3) NSTEPS2=NSTEPS0
      READ (13.9501)(XTEMP(K3), K3=1, NSTEPS2)
                                                                            09350
      WRITE (J. 1736) SUB(I)
                                                                            09360
                                                                            09370
      WRITE (J,9501)(XTEMP(K3),K3=1,NTEMP)
                                                                            09380
      CALL REF (0,0,1)
      IF (JOPTION.NE.1) GO TO 3308
                                                                            09390
                                                                            09400
      IREQUIRED(6)=0
      GO TO 531
                                                                            09410
                                                                            09420
C
        *** XTEMP ***
                                                                            09430
                                                                            09440
 3308 K=1
                                                                            09450
 3307 CALL QUESTA (*8020,K,'XTEMP',5,XTEMP(K),'A10 ',1,1)
                                                                            09460
      IF (.NOT.EXIT)GO TO 3312
                                                                            09470
      JSUB(6)=0
                                                                            09480
      GO TO 531
                                                                            09490
                                                                            09500
 3312 K=K+1
```

```
IF (K.LE.NTEMP)GO TO 3307
                                                                           09510
      IREQUIRED(6)=0
                                                                           09520
      WRITE (J,9110)
                                                                           09530
      WRITE (J,9501)(XTEMP(K),K=1,NTEMP)
                                                                           09540
      IF (OK())GO TO 531
                                                                           09550
      GO TO 3308
                                                                           09560
 3320 WRITE (J.3321)
                                                                           09570
 3321 FORMAT (/, 'ERROR: TEMP DATA BLOCK NOT REQUIRED WHEN IOPT(4) ='
                                                                           09580
     1,' 0',//)
                                                                           09590
      JSUB(6)=0
                                                                           09600
                                                                           09610
      GO TO 531
 3280 CONTINUE
                                                                           09620
                                                                           09630
C
                                                                           09640
C
      STEPS DATA BLOCK
                                                                           09650
C
                                                                           09660
                                                                           09670
      IF(IOPT(3).EQ.O.OR.IOPT(3).EQ.6)GO TO 3630
                                                                           09680
      NSTEP=NSTEPS
                                                                           09690
      IF (IOPT(3).EQ.4)NSTEP=1
                                                                           09700
      IF (IOPEN.EQ.O)GO TO 3608
                                                                           09710
      NSTEPS1=NSTEPS0
                                                                           09720
      IF (IOPTO3.EQ.4) NSTEPS1=1
                                                                           09730
      READ (13,9501)(XSTEP(K3),K3=1,NSTEPS1)
                                                                           09740
      WRITE (J. 1736) SUB(I)
                                                                           09750
      WRITE (J,9501)(XSTEP(K3),K3=1,NSTEP)
                                                                           09760
      CALL REF (0.0.1)
                                                                           09770
      GO TO (3801,3801,3608), JOPTION
                                                                           09780
 3801 IREQUIRED(7)=0
                                                                           09790
      IF (JOPTION.NE.2) GO TO 531
                                                                           09800
C
                                                                           09810
C
        *** XSTEP ***
                                                                           09820
                                                                           09830
 3608 K=1
                                                                           09840
 3607 CALL QUESTA (*3620,K,'XSTEP',5,XSTEP(K),'A10 ',1,1)
                                                                           09850
      IF (.NOT.EXIT)GO TO 3606
                                                                           09860
      JSUB(7)=0
                                                                           09870
      GO TO 531
                                                                           09880
 3606 K=K+1
                                                                           09890
      IF (K.LE.NSTEP)GO TO 3607
                                                                           09900
      IREQUIRED(7)=0
                                                                           09910
      WRITE (J,9110)
                                                                           09920
      WRITE (J,9501)(XSTEP(K),K=1,NSTEP)
                                                                           09930
      IF (OK())GO TO 531
                                                                           09940
      GO TO 3608
                                                                           09950
 3620 GO TO (8022,8024,8026,8028),IOPT(3)
                                                                           09960
 3630 WRITE (J,3631) IOPT(3)
                                                                           09970
 3631 FORMAT (/, 'ERROR: STEPS DATA BLOCK NOT ALLOWED WHEN IOPT(3) = '
                                                                           09980
     1,1X,I1,//)
                                                                           09990
      JSUB(7)=0
                                                                           10000
      GO TO 531
                                                                           10010
 3900 CONTINUE
                                                                           10020
C
                                                                           10030
C
                                                                           10040
C
      REACTION DATA BLOCK
                                                                           10050
C
                                                                           10060
```

```
C
                                                                                     10070
       IF (NCOMPS.NE.O)GO TO 3902
                                                                                     10080
      WRITE (J.3901)
                                                                                     10090
 3901 FORMAT (//, 'ERROR: REACTION DATA BLOCK NOT ALLOWED WHEN'.
                                                                                     10100
      1' NCOMPS = 0'.//)
                                                                                     10110
       JSUB(8)=0
                                                                                     10120
      GO TO 531
                                                                                     10130
 3902 IF (IOPEN.EQ.0)GO TO 5010
                                                                                     10140
       READ (13,9701)(LREAC(K3),CREAC(K3),THMEAN(K3),K3=1,NCOMPSO)
                                                                                    10150
                                                                                    10160
       WRITE (J, 1736) SUB(I)
       WRITE (J.9701)(LREAC(K3), CREAC(K3), THMEAN(K3), K3=1, NCOMPS)
                                                                                     10170
      CALL REF (0.0.1)
                                                                                     10180
       IF (JOPTION.EQ.2) GO TO 5010
                                                                                     10190
       IREQUIRED(8)=0
                                                                                     10200
       IF (JOPTION.EQ. 1) GO TO 531
                                                                                     10210
C
                                                                                     10220
C
         *** THMEAN, LREAC, CREAC ***
                                                                                     10230
                                                                                     10240
                                                                                     10250
 5010 K=1
                                                                                     10260
 5012 K2=1
 5015 IF (K2.EQ.1) CALL QUESTB (*8032,K,'LREAC',5,LREAC(K),'I4 ',0,0,3) 10270 IF (K2.EQ.2) CALL QUESTA (*8034,K,'CREAC',5,CREAC(K),'A8 ',1,3) 10280 IF (K2.EQ.3) CALL QUESTA (*8036,K,'THMEAN',6,THMEAN(K),'A8 ',1,3) 10290
       IF (.NOT.EXIT)GO TO 5023
                                                                                     10300
                                                                                     10310
 5300 \text{ JSUB}(8)=0
       GO TO 531
                                                                                     10320
                                                                                     10330
 5023 IF (.NOT.LIST) GO TO 5025
                                                                                     10340
       CALL LISTM
      GO TO 5015
                                                                                     10350
                                                                                     10360
 5025 IF (K2.EQ.3) GO TO 5026
                                                                                     10370
       K2=K2+1
                                                                                     10380
       IREQUIRED(8)=0
                                                                                     10390
       GO TO 5015
 5026 K=K+1
                                                                                     10400
       IF (K.GT.NCOMPS) GO TO 5027
                                                                                     10410
       GO TO 5012
                                                                                     10420
 5027 WRITE (J.9110)
                                                                                     10430
       WRITE (J,9701) (LREAC(K), CREAC(K), THMEAN(K), K=1, NCOMPS)
                                                                                     10440
       IF (OK()) GO TO 531
                                                                                     10450
       GO TO 5010
                                                                                     10460
 6000 CONTINUE
                                                                                     10470
C
                                                                                     10480
C
                                                                                     10490
C
       NEUTRAL DATA BLOCK
                                                                                     10500
C
                                                                                     10510
                                                                                     10520
       IF(IOPT(2).NE.2)GO TO 6040
                                                                                     10530
       IF (IOPEN.EQ.O)GO TO 6010
                                                                                     10540
                                                                                     10550
       CALL REF (1,1,1)
       GO TO (6100,6110,6110,6010), JOPTION+1
                                                                                     10560
                                                                                     10570
 6100 \text{ JSUB}(9)=0
                                                                                     10580
       GO TO 531
 6110 READ(JLINE(1),9801)LPOS,LNEG
                                                                                     10590
       IREQUIRED(9)=0
                                                                                     10600
       IF (JOPTION.EQ.1)GO TO 531
                                                                                     10610
C
                                                                                     10620
```

```
С
        *** LPOS ***
                                                                            10630
                                                                            10640
 6010 CALL QUESTB (*8038,0,'LPOS',4,LPOS,'I5 ',0,0,3)
                                                                            10650
      IF (.NOT.EXIT)GO TO 6016
                                                                            10660
      JSUB(9)=0
                                                                            10670
      GO TO 531
                                                                            10680
 6016 IF (.NOT.LIST)GO TO 6017
                                                                            10690
      CALL LISTM
                                                                            10700
      GO TO 6010
                                                                            10710
 6017 IREQUIRED(9)=0
                                                                            10720
C
                                                                            10730
C
        *** LNEG ***
                                                                            10740
                                                                            10750
 6020 CALL QUESTB (*8040,0,'LNEG',4,LNEG,'15 ',0,0,2)
                                                                            10760
      IF (.NOT.LIST)GO TO 6030
                                                                            10770
                                                                            10780
      CALL LISTM
      GO TO 6020
                                                                            10790
 6030 WRITE (J,9110)
                                                                            10800
      WRITE (J,9801)LPOS, LNEG
                                                                            10810
      IF (OK()) GO TO 531
                                                                            10820
      GO TO 6000
                                                                            10830
 6040 WRITE (J.6041)
                                                                            10840
 6041 FORMAT (/, 'ERROR: NEUTRAL DATA BLOCK IS REQUIRED ONLY IF IOPT'
                                                                            10850
     1,'(2) = 2',//)
                                                                            10860
      JSUB(9)=0
                                                                            10870
      GO TO 531
                                                                            10880
 7000 CONTINUE
                                                                            10890
C
                                                                            10900
C
                                                                            10910
C
      SUMS DATA BLOCK
                                                                            10920
                                                                            10930
C
                                                                            10940
      IF(ISUM.NE.O.OR.IOPEN.NE.O)GO TO 7001
                                                                            10950
C
                                                                            10960
C
          DELETE ALL OLD SUMS....
                                                                            10970
C
                                                                            10980
      WRITE (J,7003)
                                                                            10990
 7003 FORMAT (/,'DO YOU WANT TO DELETE ALL OLD SUMS?')
                                                                            11000
      IF (YN())JDELETE=1
                                                                            11010
 7001 ISUM=ISUM+1
                                                                            11020
      IF (IOPEN.EQ.0)GO TO 7010
                                                                            11030
 7116 CALL REF (1,0,0)
                                                                            11040
      IF (JOPTION.EQ.0)GO TO 7111
                                                                            11050
      WRITE (J, 1736) SUB(I)
                                                                            11060
      WRITE (J. 1731) JLINE(1)
                                                                            11070
      READ (JLINE(1),9901) SUNAME(ISUM), NSUM(ISUM)
                                                                            11080
      IF (SUNAME(ISUM).NE.DELETE)GO TO 7120
                                                                            11090
      CALL REF (0,0,2)
                                                                            11100
      GO TO (7111,7117,7116), JOPTION+1
                                                                            11110
 7117 JDELETE=1
                                                                            11120
      GO TO 7116
                                                                            11130
 7120 READ (13,9902)(LSUM(ISUM, M3), M3=1, NSUM(ISUM))
                                                                            11140
      WRITE (J,9902) (LSUM(ISUM,M3),M3=1,NSUM(ISUM))
                                                                            11150
      CALL REF (0,0,3)
                                                                            11160
      GO TO (7111,7001,7010,7116),JOPTION+1
                                                                            11170
C
                                                                            11180
```

```
C
        *** SUNAME ***
                                                                           11190
                                                                           11200
 7010 CALL QUESTA (*8042,0,'SUNAME',6,SUNAME(ISUM),'A8 ',0,1)
                                                                           11210
      IF (.NOT.EXIT)GO TO 7020
                                                                           11220
 7111 ISUM=ISUM-1
                                                                           11230
                                                                           11240
      IF (ISUM.EQ.0)JSUB(10)=0
      GO TO 531
                                                                           11250
C
                                                                           11260
C
        *** NSUM ***
                                                                           11270
                                                                           11280
 7020 CALL QUESTB (*8044,0,'NSUM',4,NSUM(ISUM),'I2 ',0,50,0)
                                                                           11290
      WRITE (J,9110)
                                                                           11300
      WRITE (J,9901) SUNAME(ISUM), NSUM(ISUM)
                                                                           11310
      IF (.NOT.OK())GO TO 7010
                                                                           11320
                                                                           11330
C
C
        *** LSUM ***
                                                                           11340
C
                                                                           11350
                                                                           11360
 7030 K=1
 7037 CALL QUESTB (*8046,K,'LSUM',4,LSUM(ISUM,K),'I4 ',0,10000,0)
                                                                           11370
      K = K + 1
                                                                           11380
      IF (K.LE.NSUM(ISUM))GO TO 7037
                                                                           11390
      WRITE (J.9110)
                                                                           11400
      WRITE (J,9902) (LSUM(ISUM,K),K=1,NSUM(ISUM))
                                                                           11410
      IF (.NOT.OK())GO TO 7030
                                                                           11420
      IF (JOPTION.EQ.2)GO TO 7001
                                                                           11430
      WRITE (J.7051)
                                                                           11440
 7051 FORMAT (/, 'MORE SUMS?')
                                                                           11450
      IF (YN())GO TO 7000
                                                                           11460
      GO TO 531
                                                                           11470
C
                                                                           11480
C
                                                                           11490
   _____
C
                                                                           11500
   END DATA BLOCK
C
                                                                           11510
   _____
                                                                            11520
  950 CONTINUE
                                                                           11530
      JOPTION=0
                                                                           11540
                                                                           11550
      KKK = 1
  954 IF (IREQUIRED(KKK).EQ.1)GO TO 952
                                                                            11560
  953 KKK=KKK+1
                                                                           11570
      IF (KKK.EQ.11)GO TO 958
                                                                            11580
      GO TO 954
                                                                            11590
C
                                                                            11600
C
          OOPS!! HE LEFT OUT A DATA BLOCK.
                                                                           11610
                                                                            11620
  952 WRITE (J.955)SUB(KKK)
                                                                            11630
  955 FORMAT (/, 'ERROR: ', A8,' DATA BLOCK IS REQUIRED'/)
                                                                           11640
      IERROR=1
                                                                            11650
                                                                            11660
      GO TO 953
  958 IF (IERROR.EQ.0)GO TO 957
                                                                            11670
                                                                            11680
      JSUB(11)=0
      IERROR=0
                                                                            11690
                                                                            11700
      GO TO 531
C
                                                                            11710
          EXCLUDE ELEMENTS OR SPECIES THAT ARE ALREADY IN PHROPITZ'S
C
                                                                            11720
C
          THERMODYNAMIC DATA.
                                                                            11730
C
                                                                            11740
```

```
957 DO 951 JL=4,30
                                                                           11750
      IF (ICOL2(JL), EQ. 0)GO TO 951
                                                                           11760
      ICHECK(1,ICOL2(JL))=0
                                                                           11770
      ICHECK(2, ICOL2(JL))=0
                                                                           11780
  951 CONTINUE
                                                                           11790
      JJ=1
                                                                           11800
  943 JJJ=4
                                                                           11810
  942 IF (ICHECK(JJ,JJJ).EQ.1)GO TO (944,945).JJ
                                                                           11820
  949 JJJ=JJJ+1
                                                                           11830
                                                                           11840
      IF (JJJ.EQ.31)GO TO 946
      GO TO 942
                                                                           11850
  946 JJ=JJ+1
                                                                           11860
      IF (JJ.EQ.3)GO TO 947
                                                                           11870
      GO TO 943
                                                                           11880
  944 WRITE (J,948)JJJ
                                                                           11890
  948 FORMAT ('ERROR: SPECIES #',12,' WAS NOT ENTERED.')
                                                                           11900
  938 IERROR=1
                                                                           11910
      GO TO 949
                                                                           11920
  945 WRITE (J.937)JJJ
                                                                           11930
  937 FORMAT ('ERROR: ELEMENT #',12,' WAS NOT ENTERED.')
                                                                           11940
      GO TO 938
                                                                           11950
  947 IF (IERROR.EQ.0)GO TO 959
                                                                           11960
C
                                                                           11970
C
          HE ISN'T ALLOWED TO END.
                                                                           11980
C
                                                                           11990
      IERROR=0
                                                                           12000
      JSUB(11)=0
                                                                           12010
      GO TO 531
                                                                           12020
C
                                                                           12030
C
          EVERYTHING NEEDED IS PRESENT.
                                                                           12040
                                                                           12050
  959 GO TO 9010
                                                                           12060
 5001 WRITE (J.5000)
                                                                           12070
 5000 FORMAT ('MORE SIMULATIONS?')
                                                                           12080
      IF (.NOT.YN())GO TO 50
                                                                           12090
      IF (JOPEN.EQ.0)GO TO 5003
                                                                           12100
 5006 READ (13, 1731, END=5003) LINE
                                                                           12110
      WRITE (J,5005)
                                                                           12120
 5005 FORMAT(/, 'DO YOU WISH TO USE THE NEXT SIMULATION IN YOUR',
                                                                           12130
     1' REFERENCE?')
                                                                           12140
      IF (.NOT.YN())GO TO 5008
                                                                           12150
      BACKSPACE 13
                                                                           12160
      IOPEN=1
                                                                           12170
      GO TO 3
                                                                           12180
 5008 READ (13,5009, END=5003) LINE
                                                                           12190
 5009 FORMAT (A3)
                                                                           12200
      IF (LINE(1:3).EQ.'END')GO TO 5006
                                                                           12210
      GO TO 5008
                                                                           12220
 5003 WRITE (J.5002)
                                                                           12230
 5002 FORMAT (/,'DO YOU WISH TO DEFINE THE PREVIOUS OUTPUT AS '
                                                                           12240
     1,/,1X,'YOUR NEW REFERENCE?')
                                                                           12250
      IF (.NOT.YN())GO TO 2
                                                                           12260
                                                                           12270
C
          WRITE THE OUTPUT ONTO THE REFERENCE FILE.
                                                                           12280
C
                                                                           12290
      OUT = 13
                                                                           12300
```

```
CLOSE (UNIT=OUT)
                                                                             12310
      OPEN (UNIT=OUT, STATUS='SCRATCH')
                                                                             12320
                                                                             12330
      REWIND OUT
      GO TO 9010
                                                                             12340
  999 ENDFILE (UNIT=OUT)
                                                                             12350
      REWIND OUT
                                                                             12360
      IOPEN=1
                                                                             12370
C
                                                                             12380
C
          LET'S TRY AGAIN...
                                                                             12390
C
                                                                             12400
                                                                             12410
      GO TO 3
   50 ENDFILE (UNIT=10)
                                                                             12420
                                                                             12430
      STOP
C
                                                                             12440
 9010 CONTINUE
                                                                             12450
                                                                             12460
C
          WRITE TO FILE....
                                                                             12470
С
                                                                             12480
      ITER=1
                                                                             12490
C
                                                                             12500
C
            PRINT TITLE CARD.
                                                                             12510
C
                                                                             12520
      WRITE (OUT, 1731)TITLE
                                                                             12530
C
                                                                             12540
C
           PRINT OPTION CARD.
                                                                             12550
                                                                             12560
      WRITE (OUT, 9991) (IOPT(I), I=1,10), NSTEPS, NCOMPS, VO
                                                                             12570
 9991 FORMAT (1011,212,6X,A10)
                                                                             12580
      DO 9999 L=1,11
                                                                             12590
      IF (JSUB(IORDER(L)).LT.1) GO TO 9999
                                                                             12600
      IF (IORDER(L).EQ.1)GO TO 9000
                                                                             12610
      WRITE (OUT, 9050)SUB(IORDER(L))
                                                                             12620
 9050 FORMAT (A8)
                                                                             12630
      GO TO (9100,9200,9300,9300,9500,9600,9700,9800,9900,9999), IORDER(L 12640
                                                                             12650
C
                                                                             12660
C
          PRINT SOLUTION DATA BLOCK.
                                                                             12670
                                                                             12680
 9000 WRITE (OUT, 9001) SUB(1), NSOLUTION(ITER)
                                                                             12690
 9001 FORMAT (A8.1X.I1)
                                                                              12700
      WRITE (OUT, 1731) HEAD(ITER)
                                                                             12710
      WRITE (OUT, 9003) NTOTS(ITER), IALK(ITER), IUNITS(ITER), PH(ITER)
                                                                             12720
     1. PE(ITER), TEMP(ITER), SDENS(ITER)
                                                                             12730
 9003 FORMAT(12,13,12,3X,4A10)
                                                                             12740
      IF (NTOTS(ITER).EQ.0)GO TO 9005
                                                                             12750
      WRITE (OUT, 9004)(LT(ITER, M), DTOT(ITER, M), M=1, NTOTS(ITER))
                                                                             12760
 9004 FORMAT (6(5(I4,A11),:,/))
                                                                             12770
 9005 IF (ISOL.EQ.ITER) GO TO 9999
                                                                             12780
      ITER=2
                                                                             12790
      GO TO 9000
                                                                             12800
C
                                                                             12810
C
          PRINT ELEMENTS DATA BLOCK.
                                                                             12820
                                                                             12830
 9100 DO 9103 MM=1. IELEMENT
                                                                             12840
 9103 WRITE (OUT, 9102) TNAME(MM), NELT(MM), TGFW(MM)
                                                                             12850
 9102 FORMAT(A8,2X,I2,3X,A10)
                                                                             12860
```

```
12870
      WRITE (OUT. 9110)
                                                                              12880
 9110 FORMAT (1X)
      GO TO 9999
                                                                              12890
                                                                              1290C
C
C
          PRINT SPECIES DATA BLOCK.
                                                                              12910
                                                                              12920
                                                                              12930
 9200 DO 9206 MM=1.ISPECIE
                                                                              12940
      WRITE (OUT, 9202) NI(MM)
 9202 FORMAT (13)
                                                                              12950
      IF(ISDEL(MM).EQ.0)GO TO 9207
                                                                              12960
      WRITE (OUT, 9110)
                                                                              12970
      GO TO 9206
                                                                              12980
 9207 WRITE (OUT, 9203) SNAME(MM), NSP(MM), KFLAG(MM), GFLAG(MM), ZSP(MM)
                                                                              12990
                                                                              13000
     1, THSP(MM), DHA(MM), ADHSP(MM, 1), ADHSP(MM, 2), ALKSP(MM)
 9203 FORMAT (A8,2X,13,2I1,6A10)
                                                                              13010
      WRITE (OUT, 9204) LKTOSP(MM), DHSP(MM), (ASP(MM, M), M=1,5)
                                                                              13020
 9204 FORMAT (2A10,5A12)
                                                                              13030
      WRITE (OUT, 9205)(LSP(MM,M), CSP(MM,M), M=1, NSP(MM))
                                                                              13040
                                                                              13050
 9205 FORMAT (6(13,A7))
 9206 CONTINUE
                                                                              13060
      WRITE (OUT, 9110)
                                                                              13070
      GO TO 9999
                                                                              13080
C
                                                                              13090
C
          PRINT MINERALS OR LOOK MIN DATA BLOCK.
                                                                              13100
                                                                              13110
 9300 NM=IORDER(L)-3
                                                                              13120
      IF (NM.NE.2.OR.IDELETE.NE.1)GO TO 9301
                                                                              13130
      WRITE (OUT, 9050) DELETE
                                                                              13140
 9301 IM=IMINERAL(NM)
                                                                              13150
      DO 9305 MM=1, IM
                                                                              13160
      WRITE (OUT, 9302) MNAME(NM, MM), NMINO(NM, MM), THMIN(NM, MM), LKTOM(NM
                                                                              13170
                                                                              13180
     1,MM),DHMIN(NM,MM),MFLAG(NM,MM),SIMIN(NM,MM)
 9302 FORMAT (A8,2X,12,3X,3A10,5X,11,9X,A10)
                                                                              13190
      WRITE (OUT, 9303) (LMIN(NM, MM, M), CMIN(NM, MM, M), M=1, NMINO(NM, MM))
                                                                              13200
 9303 FORMAT (2(5(I4,A11,:),/))
                                                                              13210
      IF(MFLAG(NM,MM).NE.1)GO TO 9305
                                                                              13220
      WRITE (OUT, 9304) (AMIN(NM, MM, M), M=1,5)
                                                                              13230
 9305 CONTINUE
                                                                              13240
      WRITE (OUT, 9110)
                                                                              13250
 9304 FORMAT (5A12)
                                                                              13260
      GO TO 9999
                                                                              13270
C
                                                                              13280
С
          PRINT TEMP DATA BLOCK.
                                                                              13290
                                                                              13300
 9500 WRITE (OUT, 9501) (XTEMP(IF), IF=1, NTEMP)
                                                                              13310
 9501 FORMAT (7(8(A10,:),/))
                                                                              13320
      GO TO 9999
                                                                              13330
C
                                                                              13340
                                                                              13350
C
          PRINT STEP DATA BLOCK.
                                                                              13360
 9600 WRITE (OUT, 9501) (XSTEP(IF), IF=1, NSTEP)
                                                                              13370
      GO TO 9999
                                                                              13380
C
                                                                              13390
C
                                                                              13400
          PRINT REACTION DATA BLOCK.
                                                                              13410
 9700 WRITE (OUT, 9701)(LREAC(M), CREAC(M), THMEAN(M), M=1, NCOMPS)
                                                                              13420
```

```
9701 FORMAT (8(4(14,2A8,:),/))
                                                                                13430
      GO TO 9999
                                                                                13440
C
                                                                                13450
C
           PRINT NEUTRAL DATA BLOCK.
                                                                                13460
C
                                                                                13470
 9800 WRITE (OUT, 9801) LPOS, LNEG
                                                                                13480
 9801 FORMAT (215)
                                                                                13490
      GO TO 9999
                                                                                13500
C
                                                                                13510
C
           PRINT SUMS DATA BLOCK.
                                                                                13520
                                                                                13530
 9900 IF (JDELETE.NE.1)GO TO 9904
                                                                                13540
      WRITE (OUT, 9302) DELETE
                                                                                13550
 9904 DO 9903 MM=1, ISUM
                                                                                13560
      WRITE (OUT, 9901) SUNAME (MM), NSUM (MM)
                                                                                13570
                                                                                13580
 9901 FORMAT (A8,2X,12)
 9903 WRITE (OUT, 9902) (LSUM(MM, M), M=1, NSUM(MM))
                                                                                13590
 9902 FORMAT(2014)
                                                                                13600
      WRITE (OUT, 9110)
                                                                                13610
 9999 CONTINUE
                                                                                13620
C
                                                                                13630
      IF (OUT.EQ. 10) GO TO 5001
                                                                                13640
      GO TO 999
                                                                                13650
C
                                                                                13660
C
         HELP MESSAGES....
                                                                                13670
                                                                                13680
                                                                                13690
  290 NSTART=N
      GO TO (2000,2020,2040,2060,2080,2080,2120,2140,2160,2180),N
                                                                                13700
 1000 WRITE (J, 1010)
                                                                                13710
 1010 FORMAT (/1X, 'TITLE CARD', 2X, 'TITLE', /, 1X, 'FORMAT (A80)',
                                                                                13720
      1/,1X,'EIGHTY CHARACTERS OF TITLES OR COMMENTS.'//)
                                                                                13730
      GO TO 10
                                                                                13740
 2000 WRITE (J,2010) OPTION
                                                                                13750
 2010 FORMAT (/1X,A11,/,13X,'IOPT(1) = 0, NO PRINT OF',
                                                                                13760
     1' THERMODYNAMIC DATA OR COEFFICIENTS',/,26X,'OF AQUEOUS',
                                                                                13770
     2' SPECIES.',//,21X,'= 1, PRINT THE AQUEOUS MODEL DATA',
                                                                                13780
     3' (WHICH ARE STORED', /26X, 'ON DISK) ONCE DURING THE ENTIRE',
                                                                             13790
     4' COMPUTER RUN.'./.1X.'FORMAT (I1)'.//)
                                                                                13800
      GO TO 93
                                                                                13810
 2020 WRITE (J,2030) OPTION
                                                                                13820
 2030 FORMAT(/1X, A11,/, 13X, 'IOPT(2) = 0, INITIAL SOLUTIONS',
                                                                                13830
     1' ARE NOT TO BE CHARGE BALANCED.',/,26X,'REACTION SOLUTIONS',
2' MAINTAIN THE INITIAL CHARGE',/,26X,'IMBALANCE.',//,21X,'= 1,',
                                                                                13840
                                                                                13850
     3' PH IS ADJUSTED IN INITIAL SOLUTION(S) TO',/,26X,'OBTAIN CHARGE', 13860
     4' BALANCE.',//,21X,'= 2, THE TOTAL CONCENTRATION OF ONE OF THE', 5' ELEMENTS',/,26X,'(EXCEPT H OR O) IS ADJUSTED TO OBTAIN',
                                                                                13870
                                                                                13880
     6' ELECTRICAL',/,26x,'BALANCE. NEUTRAL INPUT IS REQUIRED.',/,1x,'F 13890
     70RMAT (I1)',//)
                                                                                13900
      GO TO 93
                                                                                13910
 2040 WRITE (J,2050) OPTION
                                                                                13920
 2050 FORMAT (/1X,A11,/,13X,'IOPT(3) = 0, NO REACTIONS ARE',
                                                                                13930
      1' MODELED. ONLY THE INITIAL',/,26X,'SOLUTIONS ARE SOLVED.'//,
                                                                                13940
     221X,'= 1, SOLUTION 1 IS MIXED (A HYPOTHETICAL CONSTANT',/,26X,
                                                                                13950
      3'VOLUME PROCESS) WITH SOLUTION 2 IN SPECIFIED',/,26x,'REACTION',
                                                                                13960
     4' STEPS. STEPS INPUT AND A VALUE FOR',/,26X, 'NSTEPS ARE REQUIRED' 13970
     5,'. MINERALS INPUT MAY BE',/,26X,'INCLUDED.',//,21X,'= 2,',
                                                                                13980
```

```
6' SOLUTION 1 IS TITRATED WITH SOLUTION 2 IN SPECI-',/,26X,
                                                                           13990
    7'FIED REACTION STEPS. STEPS INPUT, A VALUE FOR',/,26X,'NSTEPS,',
                                                                           14000
    8' AND A VALUE FOR VO ARE REQUIRED.',/,26X,'MINERALS INPUT MAY',
                                                                           14010
    9' BE INCLUDED.',//,21X,'= 3, A',
                                                                           14020
    !' STOICHIOMETRIC REACTION IS ADDED IN SPECIFIED',/,26X,'REACTION',
                                                                           14030
    e' STEPS. REACTION INPUT, STEPS INPUT, ',/,26X,'A VALUE FOR',
                                                                           14040
    #' NSTEPS, AND A VALUE FOR NCOMPS ARE',/,26X,'REQUIRED. MINERALS',
                                                                           14050
    $' INPUT MAY BE INCLUDED.'///' HIT <RETURN> FOR MORE INFORMATION.') 14060
     READ (J.20) LINE
                                                                           14070
     WRITE (J,2055)
                                                                           14080
                                                                           14090
2055 FORMAT(21X,'= 4, A NET STOICHIOMETRIC',
    " REACTION IS ADDED IN NSTEPS',/,26X,'EQUAL INCREMENTS.
                                                                REACTION'
                                                                           14 100
    &,' INPUT, STEPS INPUT,',/,26X,'A VALUE FOR NSTEPS, AND A VALUE FOR 14110
    * NCOMPS ARE',/,26X, REQUIRED. MINERALS INPUT MAY BE INCLUDED.'.
                                                                           14120
        ONLY', /, 26X, 'ONE VALUE FOR THE TOTAL REACTION IS READ IN STEPS.
                                                                           14130
    )',//,21X,'= 5, SOLUTION NUMBER 1 IS EQUILIBRATED WITH MINERAL'.
                                                                           14140
    -/,26X,'PHASES ONLY. NO OTHER REACTION IS PERFORMED.',/,26X,
                                                                           14150
    ='MINERALS INPUT IS REQUIRED.',//,21X,'= 6, A REACTION IS ADDED'
                                                                           14160
    +' TO SOLUTION 1 UNTIL EQUI-',/,26X,'LIBRIUM IS ATTAINED WITH THE',
                                                                           14170
    ' FIRST PHASE IN',/,26X,'MINERAL INPUT (EQUILIBRIUM WITH OTHER'
                                                                           14 180
    :' MINERALS',/,26X,'PHASES IS MAINTAINED THROUGHOUT THE REACTION)',
                                                                           14190
    /'.',/,26X,'REACTION INPUT, A VALUE FOR NCOMPS, AND MINERALS',/,
                                                                           14200
    ]26X,'INPUT ARE REQUIRED. NO STEPS INPUT IS REQUIRED.',/,26X,
                                                                           14210
    ['NOTE: THERE SHOULD BE A COMMON ELEMENT IN THE', /, 26X, 'REACTION',
                                                                           14220
    "' AND THE FIRST PHASE IN MINERALS INPUT.',/,1X,'FORMAT (I1)',//)
                                                                           14230
                                                                           14240
     GO TO 93
                                                                           14250
2060 WRITE (J.2070) OPTION
2070 FORMAT (/1X,A11,/,13X,'IOPT(4) = 0, THE TEMPERATURE OF',
                                                                           14260
    1' THE REACTION SOLUTION IS',/,26x,'A) THE SAME AS THE INITIAL',
                                                                           14270
    2' SOLUTION IF ADDING',/,26X,'A REACTION, OR B) CALCULATED LINEARLY 14280
    3 FROM THE',/,26X,'END MEMBERS IF MIXING OR TITRATING. NO TEMP',
                                                                           14290
    4/,26X,'INPUT IS REQUIRED.',//,21X,'= 1, THE TEMPERATURE IS'
                                                                           14300
    5' CONSTANT DURING THE REACTION',/,26X,'STEPS AND DIFFERS FROM THAT 14310
    6 OF THE INITIAL SOL-',/,26X,'UTION(S). ONE VALUE IS READ IN THE', 7' TEMP INPUT.'//,21X,'= 2, THE TEMPERATURE IS VARIED FROM T(O) TO'
                                                                           14320
                                                                           14330
    8, 'T(F) IN',/,26X,'NSTEPS EQUAL INCREMENTS, DURING THE REACTION',/ 14340
    9,26X,'STEPS.',//,21X,'= 3, THE TEMPERATURE',
                                                                           14350
    $' OF EACH REACTION STEP IS SPEC-',/,26X,'IFIED IN TEMP INPUT, IN'
                                                                           14360
    %,' ORDER.
                NSTEPS VALUES',/,26X,'ARE READ.',/,1X,'FORMAT (I1)',//) 14370
2080 GO TO 93
                                                                           14380
2120 WRITE (J.2130) OPTION
                                                                           14390
2130 FORMAT (/1X, A11, /, 13X, 'IOPT(7) = 0, DO NOT SAVE THE',
                                                                           14400
    1' AQUEOUS PHASE COMPOSITION AT',/,26X,'THE END OF A REACTION FOR',
                                                                           14410
    2' ADDITIONAL SIMU-',/,26X,'LATIONS.',//,21X,'= 1, SAVE THE FINAL',
                                                                           14420
    3' REACTION SOLUTION IN SOLUTION',/,26X,'NUMBER 1.',//,21X,'= 2,'
                                                                           14430
    4' SAVE THE FINAL REACTION SOLUTION IN SOLUTION', /, 26x, 'NUMBER 2.'
                                                                           14440
    5,/,1X,'FORMAT (I1)',//)
                                                                           14450
                                                                           14460
     GO TO 93
                                                                           14470
2140 WRITE (J,2150) OPTION
2150 FORMAT (/1X,A11,/,13X,'IOPT(8) = 0, THE DEBUGGING PRINT'
                                                                           14480
    1,' ROUTINE IS NOT CALLED.',//,21X,'= 1, A LONG PRINTOUT IS OUTPUT' 14490
    2,' AT EACH ITERATION IN',/,26X,'EACH PROBLEM. THIS PRINT IS TO BE 14500
    3 USED ONLY',/,26X,'IF THERE ARE CONVERGENCE PROBLEM WITH THE'
                                                                           14510
    4/,26x,'PROGRAM. (SEE SUBROUTINE PBUG)',/,1x,'FORMAT (I1)',//)
                                                                           14520
     GO TO 93
                                                                           14530
2160 WRITE (J,2170) OPTION
                                                                           14540
```

```
2170 FORMAT (/1X,A11,/,13X,'IOPT(9) = 0, NO PRINTOUT OF EACH',
                                                                          14550
    1' ARRAY INVERTED.',//,21X,'= 1, A LONG PRINTOUT OCCURS OF THE',
                                                                          14560
    2' ENTIRE ARRAY TO', /, 26X, 'BE INVERTED AT EACH ITERATION.
                                                                          14570
    3' PRINT IS',/,26X, 'USED ONLY IF THERE ARE CONVERGENCE PROBLEMS.'.
                                                                          14580
    4/.26x,'(SEE SUBROUTINE SLNQ)',/,1x,'FORMAT (I1)',//)
                                                                          14590
     GO TO 93
                                                                          14600
2180 WRITE (J.2190) OPTION
                                                                          14610
2190 FORMAT (/1X,A11,/,13X,'IOPT(10) = 0, NO CONVENTION'
                                                                          14620
    1,' FOR ACTIVITY',/,27X,'COEFFICIENT IS USED.',//,22X,'= 1,'
                                                                          14630
    2, MACINNES CONVENTION IS USED.', /, 1X, FORMAT (I1)', //)
                                                                          14640
     GO TO 93
                                                                          14650
2200 WRITE (J.2210) OPTION
                                                                          14660
2210 FORMAT (/1X,A11,/,13X,'NSTEPS',7X,'THE NUMBER OF'
                                                                          14670
    1,' STEPS. A VALUE IS', /, 26X, 'REQUIRED IF 10PT(3) = 1, 2, 3,',
                                                                          14680
    2'OR 4, OR IF', /, 26X, 'IOPT(4) = 2 OR 3.', /, 1X, 'FORMAT (I2)', //)
                                                                          14690
     GO TO 250
                                                                          14700
2300 WRITE (J,2310) OPTION
                                                                          14710
2310 FORMAT (/1X,A11,/,13X,'NCOMPS',7X,'THE NUMBER OF CONSTIT'.
                                                                          14720
    1'UENTS IN A NET STOICHIO-',/26X,'METRIC REACTION. A CONSTITUENT M 14730
    2AY BE ANY', /, 26X, 'ELEMENT WITH AN INDEX NUMBER BETWEEN 4 AND'.
                                                                          14740
    3/,26x.'30 INCLUSIVE. NO AQUEOUS SPECIES WITH INDEX',/,26x,'NUMBER 14750
    4S GREATER THAN 30 MAY BE INCLUDED AS',/,26X, REACTION CONSTITUENTS 14760
    5 EXCEPT H2 AND O2. ANY',/,26X,'CONSTITUENT WITH AN INDEX NUMBER G 14770
    6REATER THAN', /, 26X, '30 IS ASSUMED TO BE EITHER H2 OR O2 AND HAS', / 14780
    7,26x, THE EFFECT OF RAISING OR LOWERING THE REDOX', /,26x, STATE OF 14790
    8 THE SOLUTION DEPENDING ON THE AS-',/,26X,'SIGNED VALENCE (THMEAN) 14800
    9. A VALUE FOR NCOMPS', /, 26x, 'IS REQUIRED IF IOPT(3) = 3, 4, OR 6. 14810
    !'./,1X,'FORMAT (I2)',//)
                                                                          14820
     GO TO 301
                                                                          14830
2400 WRITE (J,2410) OPTION
                                                                          14840
2410 FORMAT (/1X,A11,/,13X,'VO',11X,'THE INITIAL VOLUME OF SO',
                                                                          14850
    1'LUTION NUMBER 1 WHEN', /26X, 'MODELING A TITRATION. THIS UNIT OF V 14860
    20 MUST',/,26X,'BE THE SAME AS THAT OF XSTEP (SEE STEPS INPUT)',/,2 14870
    36X,'IF IOPT(3) = 2. OTHERWISE, VO IS NOT REQUIRED',/,1X,'FORMAT ( 14880
    4F10.5)',//)
                                                                          14890
     GO TO 430
                                                                          14900
4146 WRITE (J.4147) SUB(1)
                                                                          14910
4147 FORMAT (/1X, A8, 10X, 'THIS INPUT IS USED TO DEFINE A STARTING'
                                                                          14920
    1,' SOLU-',/,19X,'TION.',//)
                                                                          14930
     GO TO 621
                                                                          14940
4148 WRITE (J,4149) SUB(2)
                                                                          14950
4149 FORMAT (/1X,A8,10X,'THIS INPUT DEFINES THE NAMES AND INDICES',
                                                                          14960
    1' OF ALL',/,19X,'ELEMENTS IN THE AQUEOUS MODEL DATA BASE.',//)
                                                                          14970
     GO TO 621
                                                                          14980
4150 WRITE (J.4151) SUB(3)
                                                                          14990
4151 FORMAT (/1X, A8, 10X, 'THIS INPUT DEFINES THE NAMES, INDEX NUMB'
                                                                          15000
    1'ERS AND',/,19X,'COMPOSITION OF ALL AQUEOUS SPECIES IN THE',
                                                                          15010
    2' AQUEOUS',/,19X,'MODEL DATA BASE.',//)
                                                                          15020
     GO TO 621
                                                                          15030
4152 WRITE (J,4153) SUB(4)
                                                                          15040
4153 FORMAT (/1X,A8,10X, 'THIS INPUT DEFINES THE PHASES WHICH WILL'
                                                                          15050
    1,' BE MAIN-',/,19X,'TAINED AT EQUILIBRIUM WITH EACH OF THE'
                                                                          15060
    2,' REACTION',/,19X,'SOLUTIONS',//)
                                                                          15070
     GO TO 621
                                                                          15080
4154 WRITE (J,4155) SUB(5)
                                                                          15090
4155 FORMAT (/1X,A8,10X, 'THE PURPOSE OF THIS INPUT IS SIMPLY TO
                                                                          15 100
```

```
1, 'PROVIDE', /, 19X, 'INFORMATION ON THE SATURATION STATE OF THE'
                                                                           15110
    2,' AQUEOUS',/,19X,'PHASE WITH RESPECT TO DESIRED MINERALS. '
                                                                           15120
    3, 'THE', /, 19x, 'MINERALS IN THIS BLOCK OF INPUT DO NOT AFFECT'
                                                                           15130
    4,' THE',/,19X,'CALCULATIONS OF THE INITIAL SOLUTION OR ANY '
                                                                           15140
    5, 'OF THE'./.19X, 'REACTION SOLUTIONS. THIS INPUT IS NEVER'
                                                                           15150
    6.' MANDATORY.',//)
                                                                           15160
     GO TO 621
                                                                           15170
4156 WRITE (J,4157) SUB(6)
                                                                           15180
4157 FORMAT (/1X,A8,10X,'THIS INPUT VARIES THE TEMPERATURE DURING'
                                                                           15190
    1,' THE',/,19X,'REACTION STEPS.',//)
                                                                           15200
     GO TO 621
                                                                           15210
4158 WRITE (J.4159) SUB(7)
                                                                           15220
4159 FORMAT (/1X, A8, 10X, 'THIS INPUT DEFINES THE STEPS OF THE '
                                                                           15230
                                                                           15240
    1, 'REACTION PROCESS.'.//)
     GO TO 621
                                                                           15250
4160 WRITE (J,4161) SUB(8)
                                                                           15260
4161 FORMAT (/1X, A8, 10X, 'THIS INPUT DESCRIBES THE STOICHIOMETRY'
                                                                           15270
    1,' AND VALENCE',/,19X,'OF THE ELEMENTS TO BE ADDED AS A'
                                                                           15280
    2.' REACTION.',//)
                                                                           15290
     GO TO 621
                                                                           15300
4162 WRITE (J,4163) SUB(9)
                                                                           15310
4163 FORMAT (/1X,A8,10X,'THIS INPUT DEFINES THE ELEMENTS TO BE '
                                                                           15320
    1, 'USED TO', /, 19X, 'ADJUST THE INITIAL SOLUTION(S) TO ELECTRI'
                                                                           15330
    2, 'CAL', /, 19x, 'NEUTRALITY.', //)
                                                                           15340
     GO TO 621
                                                                           15350
4164 WRITE (J.4165) SUB(10)
                                                                           15360
4165 FORMAT (/1x, A8, 10x, 'THIS INPUT SUMS MOLALITIES OF AQUEOUS'
                                                                           15370
    1,' SPECIES WHICH',/,19X,'ARE THEN PRINTED IN THE OUTPUT OF THE'
                                                                           15380
    2, ' RUN. THESE',/,19X,'SUMS DO NOT AFFECT THE CALCULATIONS IN'
                                                                           15390
    3,' ANY WAY AND',/,19X,'ARE NEVER MANDATORY.',//)
                                                                           15400
     GO TO 621
                                                                           15410
4166 WRITE (J,4167) SUB(11)
                                                                           15420
4167 FORMAT (/1X, A8, 10X, 'THIS CARD TERMINATES INPUT OPERATIONS'
                                                                           15430
    1,' FOR A',/,19X,'SINGLE SIMULATION. ANY COMPUTER RUN HAS '
                                                                           15440
    2, 'AT LEAST ONE', /, 19X, 'END CARD.', //)
                                                                           15450
     GO TO 621
                                                                           15460
4200 WRITE (J,4210)
                                                                           15470
4210 FORMAT (/1x, 'POSSIBLE KEYWORDS: ', //1x, '(1) ELEMENTS, (2) SPECIES'
                                                                           15480
    1,', (3)SOLUTION, (4)MINERALS, (5)LOOK MIN,',/,1X,'(6)TEMP, '
                                                                           15490
    2,'(7)STEPS, (8)REACTION, (9)NEUTRAL, (10)SUMS, (11)END',//,1X
                                                                           15500
    3, 'FORMAT (A8)', //, ' FOR MORE INFORMATION ON ANY OF THE DATA'
                                                                           15510
    4,' BLOCK, ENTER THE',/,1X,'NUMBER ASSOCIATED WITH IT.',/)
                                                                           15520
     GO TO 621
                                                                           15530
1492 WRITE (J, 1493)SUB(1)
                                                                           15540
1493 FORMAT (/1X,A8,/,13X,'N',12X,'A NUMBER OF EITHER 1 OR 2 INDICAT'
                                                                           15550
    1, 'ING THE', /, 26%, 'SOLUTION NUMBER OF THE FOLLOWING DATA.', /, 1%
                                                                           15560
    2, 'FORMAT (I1)'//)
                                                                           15570
     GO TO 1739
                                                                           15580
4300 WRITE (J,4310) SUB(1)
                                                                           15590
4310 FORMAT (/1X, A8, /, 13X, 'HEAD', /, 13X, 'FORMAT (A80)', /, 13X,
                                                                           15600
    1'TITLE OR COMMENTS ABOUT THE SOLUTION.',//)
                                                                           15610
     GO TO 1488
                                                                           15620
4320 WRITE (J,4330) SUB(1)
                                                                           15630
4330 FORMAT (/1X,A8,/,13X,'NTOTS',8X,'THE NUMBER OF TOTAL CONCENTRATION 15640
    1S TO BE',/,26X,'READ FROM CARD INPUT. FOR EXAMPLE, IF THE',/,26X, 15650
    2'STARTING SOLUTION IS MGCL2-NAHCO3 SOLUTION',/,26X,'NTOTS = 4 (FOR 15660
```

```
3 MG, CL, NA, AND C)',/,1X,'FORMAT (I2)',//)
                                                                            15670
     GO TO 1713
                                                                            15680
4340 WRITE (J.4350) SUB(1)
                                                                             15690
4350 FORMAT (/1x, A8, /, 13x, 'IALK', 9x, 'FLAG WHICH INDICATES WHETHER TOTAL 15700
    1 CARBON OR',/,26X,'TOTAL ALKALINITY IS TO BE INPUT.',//,21X,'= 0.
    21NDICATES THE TOTAL CONCENTRATION OF CARBON', /, 26X, '(NOT ALKALINIT 15720
    3Y) IS INPUT IN THE UNITS',/,26X,'SPECIFIED BY IUNITS.',//,21X,'= N 15730
    4, 4<=N<=30, WHERE N IS THE INDEX NUMBER FOR',/,26X,'THE ELEMENT CA 15740
    5RBON, (IN OUR DATA BASE N=15)',/,26X,'INDICATES TOTAL ALKALINITY I 15750
    6S BEING ENTERED.',/,26X,'ELEMENTS INPUT MAY BE REQUIRED. THE UNIT 15760
    7S OF',/,26X,'ALKALINITY ARE SPECIFIED BY IUNITS',/,26X,'AND IF ',
    9'IUNITS > 0, THE GRAM FORMULA WEIGHT (GFW)',/,26X,'OF THE ELEMENT' 15780
    !,' CARBON IS CRITICALLY IMPORTANT.',/,26X,'THE GFW IN THE CASE OF' 15790
    e, ' ALKALINITY MUST BE THE', /, 26X, 'GRAM EQUIVALENT WEIGHT (GRAMS/EQ 15800
    #UIVALENT) OF',/,26X,'THE CHEMICAL SPECIES IN WHICH THE ALKALINTY', 15810
    $/,26X,'IS REPORTED. THE FOLLOWING IS A LIST OF',//,' HIT <RETURN 15820
    /> FOR MORE EXPLANATION')
                                                                            15830
     READ (J, 1731) LINE
                                                                             15840
     WRITE (J, 4355)
                                                                             15850
4355 FORMAT(//26X, 'SPECIES'
                                                                             15860
    %'COMMONLY USED FOR REPORTING ALKA-',/,26X,'LINITY AND THEIR CORRES 15870 PONDING EQUIVALENT',/,26X,'WEIGHTS:',//,31X,'CACO3',4X,'50.0446 G/ 15880 &EQ',//,31X,'HCO3-',4X,'61.0171 G/EQ',//,31X,'CO3--',4X,'30.0046 G/ 15890
    *EQ',//,26X,'IN OUR DATA BASE 44.010 IS THE GFW OF CARBON',/,26X,'W 15900
    (HICH IS SUITABLE FOR ENTERING CARBON AS',/,26X,'TOTAL CO2. THIS G 15910
    )FW MUST BE CHANGED VIA',/,26X,'ELEMENTS INPUT IF ALKALINITY IS TO' 15920
    -,' BE ENTERED',/,26X,'AS MG/L OR PPM (IUNITS = 2 OR 3). IF IUNITS 15930
    =',/,26X,'= O ALKALINITY MUST BE INPUT AS EQ/KG H2O AND',/,26X,'IN' 15940
    +,' THIS CASE THE GFW NEED NOT BE CHANGED SINCE',/,26X,'NO CONVERSI 15950
    :ON IS NECESSARY.',/,1X,'FORMAT (13)',//)
                                                                             15960
     GO TO (1714,1752), JUMP+1
                                                                             15970
4360 WRITE (J,4370) SUB(1)
                                                                             15980
4370 FORMAT (/1X,A8,/,13X,'IUNITS',7X,'FLAG DESCRIBING UNITS OF INPUT C 15990
    10NCENTRATIONS.',/,26X,'THE PROGRAM MAKES ALL OF ITS CALCULATIONS'
                                                                             16000
    2,/,26X,'IN TERMS OF MOLALITY AND ANY OTHER ALLOWED',/,26X,'CONCEN'
                                                                            16010
    3, 'TRATION UNITS (MMOLES/L, MG/L,',/26X,'PPM OR MMOL/KG) MUST BE'
                                                                             16020
      ' CONVERTED TO MOLALITY', /26X, 'BEFORE THE CALCULATION MAY BEGIN.'
                                                                            16030
    5,' TO MAKE', /26X, 'THE CONVERSIONS IT IS NECESSARY TO KNOW THE'
                                                                             16040
    6,/26X,'GRAM FORMULA WEIGHT (GFW), IN G/MOLE, OF THE',/26X
                                                                             16050
    7, 'CHEMICAL FORMULA IN WHICH ELEMENTAL ANALYSES', /, 26x, 'ARE'
                                                                             16060
      ' REPORTED. THE GFW IS AN INPUT PARAMETER',/,26X,'UNDER'
                                                                             16070
    9,' ELEMENTS INPUT AND MUST BE IN AGREEMENT',/,26X,'WITH THE'
                                                                             16080
    !,' ANALYTICAL UNITS FOR EACH SOLUTION',/,26X,'DATA SET.
                                                                  (IF THE'
                                                                             16090
      ' UNITS ARE MOLALITY, NO',/,26X,'CONVERSION IS NECESSARY AND THE'
                                                                            16100
    #,' GFWS ARE NOT',/,26X,'USED.) NOTE: ALL ELEMENTS MUST HAVE',/
                                                                             16110
    $,26X,'THE SAME UNITS. IT IS NOT POSSIBLE TO ENTER MG/L',/,26X
                                                                             16120
    /, 'OF ONE ELEMENT AND MOLALITY OF ANOTHER.',///, HIT <RETURN> FOR'
                                                                            16130
    *.' MORE EXPLANATION')
                                                                             16140
     READ (J, 1731) LINE
                                                                             16150
     WRITE (J, 4375)
                                                                             16160
4375 FORMAT (/21X,'= 0, CONCENTRATION ',
                                                                             16170
    %'OF ELEMENTS ENTERED AS MOLALITY',/,26X,'OF EACH ELEMENT, OR FO',' 16180
    ^R ALKALINITY, EQUIV-',/,26X,'ALENTS/KG H2O.',//,21X,'= 1, CONCENTR 16190
    &ATION OF ELEMENTS ENTERED AS MMOLES/L',/,26X,'OF EACH ELEMENT, OR' 16200
    *,' FOR ALKALINITY, MEQ/L.',//,21X,'= 2, CONCENTRATION OF ELEMENTS
                                                                             16210
    (ENTERED AS MG/L',/,26X,'OF THE SPECIES WHICH HAS A GRAM FORMULA',
                                                                             16220
```

```
)/,26X,'WEIGHT GIVEN IN ELEMENTS INPUT. (ELEMENTS',/,26X,'INPUT MA 16230
    -Y BE REQUIRED.)',//,21X,'= 3, CONCENTRATION OF ELEMENTS ENTERED AS 16240
    = PPM',/,26X,'OF THE SPECIES WHICH HAS A GRAM FORMULA',/,26X,'WEIGH 16250
    +T GIVEN IN ELEMENTS INPUT. (ELEMENTS',/,26X,'INPUT MAY BE REQUIRE 16260
    :D.)',//,21X,'= 4, CONCENTRATION OF ELEMENTS ENTERED AS MMOL/KG',/, 16270
    !26X, 'SOLUTION.', /, 1X, 'FORMAT (I1)')
                                                                          16280
     GO TO 1715
                                                                          16290
4380 WRITE (J.4390) SUB(1)
                                                                          16300
4390 FORMAT (/1X,A8,/,13X,'PH',11X,'THE PH OF THE SOLUTION (THE APPROXI 16310
    1MATE PH', /, 26X, 'IF IOPT(2) = 1)', /, 1X, 'FORMAT (F10.3)', //)
                                                                          16320
                                                                          16330
     GO TO 1718
4420 WRITE (J,4430) SUB(1)
                                                                          16340
4430 FORMAT (/1x, A8, /, 13x, 'TEMP', 9x, 'THE TEMPERATURE OF THE SOLUTION IN 16350
    1 DEGREES',/,26X,'CELCIUS.',/,1X,'FORMAT (F10.3)',//)
                                                                          16360
     GO TO 1724
                                                                          16370
4440 WRITE (J.4450) SUB(1)
                                                                          16380
4450 FORMAT (/1X, A8, /, 13X, 'SDENS', 8X, 'THE DENSITY OF THE SOLUTION.', /, 1 16390
    1X, 'FORMAT (F10.3)',//)
                                                                          16400
     GO TO 1482
                                                                          16410
4100 WRITE (J.4101) SUB(1)
                                                                          16420
4101 FORMAT (/1X, A8, /, 13X, 'LT, DTOT', 6X, 'TOTAL CONCENTRATIONS OF ELEMENT 16430
    1S.',/,26X,'LT',8X,'INDEX NUMBER OF THE ELEMENT.',//,26X,'DTOT',
                                                                          16440
    26X, 'TOTAL CONCENTRATION OF THE ELEMENT IN', /, 36X, 'MOLALITY, MMOLES 16450
    3/L, MG/L, OR',/,36x,'PPM ACCORDING TO IUNITS.',/,1x,'FORMAT (14'
                                                                          16460
    4,',1X,F11.4)')
                                                                          16470
     WRITE (J,4000)
                                                                          16480
     GO TO (1326,1356),N2
                                                                          16490
4102 WRITE (J,4103) SUB(2)
                                                                          16500
4103 FORMAT (/1X, A8, /, 13X, 'TNAME', 8X, 'ALPHANUMERIC NAME OF ELEMENT.',
                                                                          16510
    1/,1X,'FORMAT (A8)')
                                                                          16520
     WRITE (J,4000)
                                                                          16530
4000 FORMAT (' NOTE: FOR A LISTING OF MASTER SPECIES AND ELEMENTS,'
                                                                          16540
    1,/,8X,'ENTER <LIST>.',//)
                                                                          16550
     GO TO 1729
                                                                          16560
4104 WRITE (J,4105) SUB(2)
                                                                          16570
4105 FORMAT (/1X,A8,/,13X,'NELT',9X,'INDEX NUMBER ASSIGNED TO THE ELEME 16580
    1NT. NUMBER',/,26X, 'MUST BE BETWEEN 4 AND 30, INCLUSIVE.',/,1X,
                                                                          16590
    2'FORMAT (12)')
                                                                          16600
     WRITE (J,4000)
                                                                          16610
     GO TO 1550
                                                                          16620
4106 WRITE (J.4107) SUB(2)
                                                                          16630
4107 FORMAT (/1X,A8,/,13X,'TGFW',9X,'GRAM FORMULA WEIGHT OF THE SPECIES 16640
    1 USED TO',/,26X,'REPORT THE ANALYTICAL DATA. IF SOLUTION DATA'
                                                                          16650
    2,/,26X,'IS TO INCLUDE ALKALINITY, TGFW FOR THE ELEMENT',/,26X,'CAR 16660
    3BON MUST BE THE EQUIVALENT WEIGHT OF THE',/,26X,'REPORTED ALKALINI 16670
    4TY SPEC S.',/,1X,'FORMAT (F10.4)')
                                                                          16680
     WRITE (J.4000)
                                                                          16690
     GO TO 1570
                                                                          16700
4110 WRITE (J,4111) SUB(3)
                                                                          16710
4111 FORMAT (/1X,A8,/,13X,'I',12X,'THE INDEX NUMBER ASSIGNED TO THE AQU 16720
    1EOUS',/,26X,'SPECIES. NUMBER 4 THROUGH 30 ARE RESERVED',/,26X,
                                                                          16730
    2'FOR MASTER SPECIES. 250 IS THE MAXIMUM INDEX',/,26X,'NUMBER FOR
                                                                          16740
    3AN AQUEOUS SPECIES.',/,1X,'FORMAT (13)',//)
                                                                          16750
     GO TO 1590
                                                                          16760
4112 WRITE (J,4113) SUB(3)
                                                                          16770
4113 FORMAT (/1X,A8,/,13X,'SNAME',8X,'ALPHANUMERIC SPECIES NAME.',/,1X, 16780
```

```
1'FORMAT (A8)',//)
                                                                          16790
     GO TO 1660
                                                                          16800
4114 WRITE (J.4115) SUB(3)
                                                                          16810
4115 FORMAT (/1X,A8,/,13X,'NSP',10X,'THE TOTAL NUMBER OF MASTER SPECIES 16820
    1 IN THE',/,26X,'ASSOCIATION REACTION THAT FORMS THIS SPECIES;',/,2 16830
    26X, DO NOT COUNT THE SPECIES ITSELF UNLESS THE', /, 26X, SPECIES IS
                                                                          16840
    3A MASTER SPECIES.',/,1X,'FORMAT (13)',//)
                                                                          16850
     GO TO 1676
                                                                          16860
4116 WRITE (J.4117) SUB(3)
                                                                          16870
4117 FORMAT (/1X,A8/,13X,'KFLAG',3X,'= 0, THE VAN''T HOFF EXPRESSION IS 16880
    1 USED TO CALCU-',/,26X,'LATE TEMPERATURE DEPENDENCE OF THE ASSOCIA 16890
    2TION',/,26X,'CONSTANT FOR THIS SPECIES.',//,21X,'= 1, AN ANALYTICA 16900
    3L EXPRESSION IS USED TO CALCU-',/,26X,'LATE TEMPERATURE DEPENDENCE 16910
    4 OF THE ASSOCIATION',/,26x,'CONSTANT.',/,1x,'FORMAT (I1)',//)
                                                                          16920
     GO TO 1680
                                                                          16930
4118 WRITE (J,4119) SUB(3)
                                                                          16940
4119 FORMAT (/1X,A8,/,13X,'GFLAG',3X,'= O, THE EXTENDED DEBYE-HUCKEL OR 16950
    1 DAVIS EXPRES-',/,26X,'SION (ACCORDING TO IOPT(6)) IS USED TO CALC 16960
    2ULATE',/,26X,'THE ACTIVITY COEFFICIENT FOR THIS SPECIES.',//,21X,
                                                                          16970
    3'= 1. THE WATEQ DEBYE-HUCKEL EXPRESSION IS USED',/,26X,'TO CALCULA 16980
    4TE THE ACTIVITY COEFFICIENT OF THIS',/,26X,'SPECIES REGARDLESS OF
                                                                          16990
    5THE VALUE OF IOPT(6)',/,1X,'FORMAT (11)'.//)
                                                                          17000
     GO TO 1690
                                                                          17010
4120 WRITE (J.4121) SUB(3)
                                                                          17020
4121 FORMAT (/1X,A8,/,13X,'ZSP',10X,'THE CHARGE ON THIS AQUEOUS SPECIES 17030
    1.',/,1X,'FORMAT (F10.3)',//)
                                                                          17040
     GO TO 1780
                                                                          17050
4122 WRITE (J.4123) SUB(3)
                                                                          17060
4123 FORMAT (/1X, A8, /, 13X, 'THSP', 9X, 'THE SUM OF THE FORMAL VALENCE OF T 17070
    THE REDOX',/,26X, SPECIES IN THIS SPECIES. (E.G. FESO4 HAS',/,26X, 17080
    2'A THSP = 2 + 6 = 8.)',/,1X,'FORMAT (F10.3)',//)
                                                                          17090
     GO TO 1790
                                                                          17100
4124 WRITE (J.4125) SUB(3)
                                                                          17110
4125 FORMAT (/1X, A8, /, 13X, 'DHA', 10X, 'THE EXTENDED DEBYE-HUCKEL A O TERM 17120
    1.',/,1X,'FORMAT (F10.3)'//)
     GO TO 1880
                                                                          17140
4126 WRITE (J,4127) SUB(3)
                                                                          17 150
4127 FORMAT (/1X,A8,/,13X,'ADHSP(1)',5X,'THE A(I) TERM FOR THE WATEQ DE 17160
    1BYE-HUCKEL EXPRESSION.',/,1X,'FORMAT (F10.3)',//)
                                                                          17170
     GO TO 1892
                                                                          17180
4128 WRITE (J.4129) SUB(3)
                                                                          17190
4129 FORMAT (/1X,A8,/,13X,'ADHSP(2)',5X,'THE B(I) TERM FOR THE WATEQ DE 17200
    1BYE-HUCKEL EXPRESSION.',/,1X,'FORMAT (F10.3)',//)
                                                                          17210
     GO TO 1892
                                                                          17220
                                                                          17230
4130 WRITE (J,4131) SUB(3)
4131 FORMAT (/1X,A8,/,13X,'ALKSP',8X,'THE ALKALINITY ASSIGNED TO THIS A 17240
    1QUEOUS SPECIES.',/,1X,'FORMAT (F10.3)',//)
                                                                          17250
     GO TO 1740
                                                                          17260
4132 WRITE (J,4133) SUB(3)
                                                                          17270
4133 FORMAT (/1x,A8,/,13x,'LKTOSP',7x,'LOG (K) AT 25 DEGREES CELCIUS',
                                                                          17280
    1', WHERE',/)
                                                                          17290
     WRITE (J.4134)
                                                                          17300
4134 FORMAT (24X, 'LOG K = A1 + A2*T + A3/T + A4*LOG(T) + A5/T^2 ')
                                                                          17310
     WRITE (J.4135)
                                                                          17320
4135 FORMAT (/1X, 'FORMAT (F10.3)'//)
                                                                          17330
     GO TO 1960
                                                                          17340
```

```
4136 WRITE (J.4137) SUB(3)
                                                                           17350
4137 FORMAT (/1X,A8,/,13X,'DHSP',9X,'STANDARD ENTHALPY OF THE ASSOCIAT' 17360
    1, 'ION REACTION AT', /, 26X, '25 DEGREES CELCIUS ( H(R), IN KCAL/'
                                                                           17370
    2, 'MOLE ).',/,1X,'FORMAT (F10.3)',//)
                                                                           17380
                                                                           17390
     GO TO 1970
                                                                           17400
4138 WRITE (J,4139) SUB(3),K,K
4139 FORMAT (/1X,A8,/,13X,'ASP(',I1,')',7X,'A',I1,' OF THE FOLLOWING',
                                                                           17410
    1' EQUATION:',/)
                                                                           17420
                                                                           17430
     WRITE (J.4134)
     WRITE (J.4140)
                                                                           17440
4140 FORMAT (/1X.'FORMAT (F12.5)')
                                                                           17450
                                                                           17460
     GO TO 1987
4142 WRITE (J.4143) SUB(3)
                                                                           17470
4143 FORMAT (/1X,A8,/,13X,'LSP',10X,'INDEX NUMBER OF MASTER SPECIES.'
                                                                           17480
    1,/,1X,'FORMAT (13)')
                                                                           17490
     WRITE (J.4000)
                                                                           17500
     GO TO 1915
                                                                           17510
4144 WRITE (J,4145) SUB(3)
                                                                           17520
4145 FORMAT (/1X, A8, /, 13X, 'CSP', 10X, 'STOICHIOMETRIC COEFFICIENT OF',
                                                                           17530
    1' MASTER SPECIES',/,26X,'IN THIS AQUEOUS SPECIES.',/,1X,'FORMAT'
                                                                           17540
    2.' (F7.3)')
                                                                           17550
     WRITE (J,4000)
                                                                           17560
     GO TO 1915
                                                                           17570
8000 WRITE (J,8001) SUB(I)
                                                                           17580
8001 FORMAT (/1X,A8,/,13X,'MNAME',8X,'ALPHANUMERIC NAME OF MINERAL',/,
                                                                           17590
    11X, 'FORMAT (A8)',//)
                                                                           17600
     GO TO 3102
                                                                           17610
8002 WRITE (J.8003) SUB(I)
                                                                           17620
8003 FORMAT (/1x, A8, /, 13x, 'NMINO', 8x, 'NUMBER OF DIFFERENT SPECIES IN TH 17630
    1E MINERAL', /, 26X, 'DISSOCIATION REACTION (INCLUDING H+, E-, AND', /
                                                                           17640
    2,26x,'H2O). NMINO MUST BE LESS THAN OR EQUAL TO 10.'./,1X,
                                                                           17650
    3'FORMAT (I2)',//)
                                                                           17660
     GO TO 3110
                                                                           17670
8004 WRITE (J,8005) SUB(I)
                                                                           17680
8005 FORMAT (/1x, A8, /, 13x, 'THMIN', 8x, 'THE SUM OF THE VALENCES OF THE RE 17690
    1DOX SPECIES', /, 26X, 'IN THE MINERAL DISSOCIATION REACTION.', /, 1X,
                                                                           17700
    2'FORMAT (F10.3)',//)
                                                                           17710
     GO TO 3120
                                                                           17720
8006 WRITE (J.8007)SUB(I)
                                                                           17730
8007 FORMAT (/1X,A8,/,13X,'LKTOM',8X,'LOG OF THE EQUILIBRIUM CONSTANT'
                                                                           17740
    1,' AT 25 DEGREES',/,26X,'CELCIUS FOR THE REACTION',/,1X,'FORM AT'
                                                                           17750
                                                                           17760
    2,' (F10.3)',//)
     GO TO 3130
                                                                           17770
8008 WRITE (J,8009) SUB(I)
                                                                           17780
8009 FORMAT (/1X,A8,/,13X,'DHMIN',8X,'DELTA H(R) (KCAL/MOLE) FOR THE '
                                                                           17790
    1, 'VANT HOFF', /, 26X, 'EXPRESSION.', /, 1X, 'FORMAT (F10.3)'//)
                                                                           17800
                                                                           17810
     GO TO 3140
8010 WRITE (J,8011) SUB(I)
                                                                           17820
8011 FORMAT (/1x, A8, /, 13x, 'MFLAG', 3x, '= 0, THE VANT HOFF EXPRESSION IS' 17830
    1,' USED TO CALCU-',/,26x,'LATE THE TEMPERATURE DEPENDENCE OF THE', 17840
    2' EQUIL-',/,26X,'IBRIUM CONSTANT',//,21X,'= 1, THE ANALYTICAL EXP'
    3. RESSION IS USED TO CALCU-1/,26X, LATE THE TEMPERATURE DEPENDENCE 17860
    4 OF THE EQUIL-',/,26X,'IBRIUM CONSTANT.',/,1X,'FORMAT (I1)'//)
                                                                           17870
                                                                           17880
     GO TO 3150
8012 WRITE (J,8013) SUB(I)
                                                                           17890
8013 FORMAT (/1X,A8,/,13X,'SIMIN',8X,'SATURATION INDEX (LOG(ION ACTIVI' 17900
```

```
1,'TY PRODUCT/K(SP)))',/,26X,'DESIRED IN THE FINAL SOLUTION. SIMIN 17910
    2 = 0.0',/,26x,'WOULD PRODUCE EQUILIBRIUM WITH THE MINERAL',/,26x,
    3'WHILE 1.0 WOULD PRODUCE A SOLUTION 10 TIMES',/,26X,'SUPERSATURATE 17930
    4D (SI = 1.0). THIS VARIABLE IS',/,26X, USEFUL IN SPECIFYING THE ' 17940
    5, 'PARTIAL PRESSURE OF', /, 26x, 'A GAS. THE HENRY(S) LAW CONSTANT ',
    6'FOR THE GAS',/,26X,'WOULD BE ENTERED USING THE VANT HOFF (LKTOM)
    7'/.26x.'OR ANALYTICAL EXPRESSION (AMIN) AND THE LOG OF'/.25x.' THE 17970
    8 PARTIAL PRESSURE WOULD BE ENTERED FOR SIMIN.',/,1X,'FORMAT (F10.3 17980
    9)',//)
                                                                          17990
     GO TO 3167
                                                                          18000
8014 WRITE (J.8015) SUB(I)
                                                                          18010
8015 FORMAT (/1X,A8,/,13X,'LMIN',9X,'INDEX NUMBER OF SPECIES (NOT NECE'
                                                                          18020
    1, 'SSARILY MASTER', /, 26X, 'SPECIES) IN THE DISSOCIATION REACTION ',
                                                                          18030
    2'FOR',/,26X,'THIS MINERAL',/,1X,'FORMAT (14)')
                                                                          18040
     WRITE (J.3800)
                                                                          18050
     GO TO 3195
                                                                          18060
8016 WRITE (J,8017) SUB(I)
                                                                          18070
8017 FORMAT (/1X,A8,/,13X,'CMIN',9X,'STOICHIOMETRIC COEFFICIENT OF '
                                                                          18080
    1'SPECIES IN',/,26X,'DISSOCIATION REACTION.',/,1X,'FORMAT (F11.3)') 18090
     WRITE (J,3800)
                                                                          18100
     GO TO 3195
                                                                          18110
8018 WRITE (J.8019) SUB(I),K,K
                                                                          18120
8019 FORMAT (/1X,A8,/,9X,'AMIN(',I1,')',6X,'A',I1,1X,'OF THE FOLLOWING
                                                                          18130
    1 MINERAL DISSOCIATION', /, 22X, 'REACTION:', //, 22X, 'LOG K = A1 +'
                                                                          18140
    2,' A2*T + A3/T + A4*LOG(T) + A5/T^2 ',//,22X,'WHERE T IS'
                                                                          18150
    3,' IN DEGREES KELVIN',/,1X,'FORMAT (F12.5)',//)
                                                                          18160
     GO TO 3207
                                                                          18170
8020 WRITE (J,8021) SUB(6)
                                                                          18180
8021 FORMAT (/1X,A8,/,13X,'XTEMP',8X,'TEMPERATURE IN DEGREES CELSIUS.'
                                                                          18190
    1,/,1X,'FORMAT (F10.3)',//)
                                                                          18200
     GO TO 3307
                                                                          18210
8022 WRITE (J,8023) SUB(7)
                                                                          18220
8023 FORMAT (/1X,A8,/,13X,'XSTEP',8X,'THE FRACTION OF SOLUTION 1 TO BE'
                                                                          18230
    1,/,26x,'MIXED WITH SOLUTION 2.')
                                                                          18240
8030 WRITE (J.8029)
                                                                          18250
8029 FORMAT (1X, 'FORMAT (F10.9)',//)
                                                                          18260
     GO TO 3607
                                                                          18270
8024 WRITE (J.8025) SUB(7)
                                                                          18280
8025 FORMAT (/1X,A8,/,13X,'XSTEP',8X,'THE VOLUME OF SOLUTION 2 TO',
                                                                          18290
    1' BE',/,26X,'TITRATED INTO SOLUTION 1. XSTEP MUST',/,26X,'HAVE'
                                                                          18300
    2,' THE SAME UNITS AS VO.')
                                                                          18310
                                                                          18320
     GO TO 8030
8026 WRITE (J,8027) SUB(7)
                                                                          18330
8027 FORMAT (/1x, A8, /, 13x, 'xSTEP', 8x, 'THE MOLES OF REACTION TO BE ',
                                                                          18340
    1'ADDED',/,26X,'TO SOLUTION 1')
                                                                          18350
     GO TO 8030
                                                                          18360
8028 WRITE (J,8031) SUB(7)
                                                                          18370
8031 FORMAT (/1X,A8,/,13X,'XSTEP',8X,'THE TOTAL NUMBER OF MOLES OF'
                                                                          18380
    1,/,26x,'REACTION TO BE ADDED IN NSTEPS',/,26x,'STEPS. NSTEPS'
                                                                          18390
    2,' REACTION SOLUTIONS'/,26X,'WILL BE CALCULATED. THE I(TH) SOLU-'
                                                                          18400
    3,/,26x,'TION WILL HAVE I*XSTEP/NSTEPS MOLES',/,26x,'OF REACTION'
                                                                          18410
    4,' ADDED TO SOLUTION 1.')
                                                                          18420
     GO TO 8030
                                                                          18430
8032 WRITE (J,8033) SUB(8)
                                                                          18440
8033 FORMAT (/1X,A8,/,13X,'LREAC',8X,'INDEX NUMBER OF ELEMENT FOR THE'
                                                                          18450
    1,' REACTION.',/,26x,'LREAC MUST BE BETWEEN 4 AND 30 INCLUSIVE.',/, 18460
```

```
226X, 'IF LREAC IS GREATER THAN 30 THE PROGRAM', /, 26X, 'CONSIDERS',
                                                                            18470
     3' THIS CONSTITUENT TO BE H2 OR ',/,26x,'02 AND ONLY USES CREAC',
                                                                            18480
     4' AND THMEAN',/,26X,'TO CHANGE THE OXIDATION STATE OF THE'./.26X
                                                                            18490
     5. 'REACTION SOLUTION.'./.1X. 'FORMAT (14)')
                                                                            18500
      WRITE (J.3800)
                                                                            18510
      GO TO 5015
                                                                            18520
 8034 WRITE (J.8035) SUB(8)
                                                                            18530
 8035 FORMAT (/1x, A8, /, 13x, 'CREAC', 8x, 'STOICHIOMETRIC COEFFICIENT OF'
                                                                            18540
     1,' THE ELEMENT',/,26X,'IN THE REACTION',/,1X,'FORMAT (F8.3)')
                                                                            18550
      WRITE (J.3800)
                                                                            18560
      GO TO 5015
                                                                            18570
 8036 WRITE (J.8037) SUB(8)
                                                                            18580
 8037 FORMAT (/1X, A8, /, 13X, 'THMEAN', 7X, 'THE VALENCE OF THE ELEMENT IN'
                                                                            18590
     1,' THE REACTION.',/,26X,'AN ELEMENT MAY BE INCLUDED MORE THAN',
                                                                            18600
     2' ONCE IN',/,26X,'A REACTION TO ACCOMODATE DIFFERENT VALENCE',/,
                                                                            18610
                                                                            18620
     326X, 'STATES OF THE ELEMENT.', /, 1X, 'FORMAT (F8.3)')
      WRITE (J.3800)
                                                                            18630
      GO TO 5015
                                                                            18640
 8038 WRITE (J.8039) SUB(9)
                                                                            18650
                                                                            18660
 8039 FORMAT (/1X,A8,/,13X,'LPOS',9X,'INDEX NUMBER OF AN ELEMENT WITH'
     1,' A CATION',/,26X,'MASTER SPECIES.',/,1X,'FORMAT (15)')
                                                                            18670
      WRITE (J.3800)
                                                                            18680
      GO TO 6010
                                                                            18690
 8040 WRITE (J.8041) SUB(9)
                                                                            18700
 8041 FORMAT (/1x,A8,/,13x,'LNEG',9x,'INDEX NUMBER OF AN ELEMENT WITH'
                                                                            18710
                                                                            18720
     1,' AN ANION',/,26x,'MASTER SPECIES.',/,1x,'FORMAT (15)')
      WRITE (J, 3800)
                                                                            18730
 3800 FORMAT (1X, 'NOTE: FOR A LISTING OF MASTER SPECIES AND ELEMENTS.'
                                                                            18740
     1,/,8x,'ENTER <LIST>.',//)
                                                                            18750
                                                                            18760
      GO TO 6020
 8042 WRITE (J,8043) SUB(10)
                                                                            18770
 8043 FORMAT (/1X,A8,/,13X,'SUNAME',7X,'ALPHANUMERIC NAME TO BE PRINT'
                                                                            18780
     1'ED TO IDENTIFY', /, 26X, 'THE SUM.', /, 1X, 'FORMAT (A8)'//)
                                                                            18790
      GO TO 7010
                                                                            18800
 8044 WRITE (J.8045) SUB(10)
                                                                            18810
 8045 FORMAT (/1X,A8,/,13X,'NSUM',9X,'THE NUMBER OF INDEX NUMBER TO BE'
                                                                            18820
     1,' READ.',/,26X,'NSUM<=50.',/,1X,'FORMAT (I2)'//)
                                                                            18830
      GO TO 7020
                                                                            18840
 8046 WRITE (J.8047) SUB (10)
                                                                            18850
 8047 FORMAT (/1X,A8,/,13X,'LSUM',9X,'INDEX NUMBERS OF SPECIES IN '
                                                                            18860
     1, 'SUM.',/,1X, 'FORMAT (14)'//)
                                                                            18870
      GO TO 7037
                                                                            18880
                                                                            18890
      END
      SUBROUTINE READFILE
                                                                            18900
                                                                            18910
C
          THIS SUBROUTINE READS FROM LOGICAL FILE #11,
                                                                            18920
C
          PRE-CONSTRUCTED MINERAL CARDS; AND FROM LOGICAL FILE #12.
                                                                            18930
C
          THE THERMODYNAMIC DATA OF PHREEQE, THE NECESSARY INFORMATIONS
                                                                            18940
C
          TO CONSTRUCT A MASTER SPECIES AND ELEMENTS TABLE.
                                                                            18950
C
                                                                            18960
      PARAMETER (IU1=11, IU2=12)
                                                                            18970
      REAL ICOL3(0:30), NOUSE6
                                                                            18980
      CHARACTER *12 THMIN(100), LKTOM(100), DHMIN(100), SIMIN(100)
                                                                            18990
     1, CMIN(100,10), AMIN(100,5)
                                                                            19000
      CHARACTER *8 NONE, MNAME(100), SUB(11), ICOL1(0:30), ICOL4(0:30)
                                                                            19010
     1.SPEC(30), KEYWORD, NOUSE2
                                                                            19020
```

```
COMMON /IUNIT/ J
                                                                             19030
      COMMON /PT/ MNAME, NMINO(100), THMIN, LKTOM, DHMIN, MFLAG(100)
                                                                             19040
     1, SIMIN, LMIN(100, 10), CMIN, AMIN, IMINERAL, SUB, ICOL1, ICOL2(0:30)
                                                                             19050
     2, ICOL3, ICOL4, SPEC, OPV(30)
                                                                             19060
      DATA NONE/'*******/
                                                                             19070
C
                                                                             19080
      LREAD=0
                                                                             19090
      J=1
                                                                             19100
      DO 40 M=1.30
                                                                             19110
   40 \text{ ICOL2(M)} = 0
                                                                             19120
      NUM = 1
                                                                             19130
C
                                                                             19140
C
                                                                             19150
          READ MINERAL CARDS.
C
          NOTE: MAXIMUM NUMBER OF MINERALS IS 100.
                                                                             19160
C
                                                                             19170
      OPEN (UNIT=IU1,FILE='RATEMOD>PITZ>INPUT>MINERALS.2.DATA',STATUS=
                                                                             19180
     1'OLD')
                                                                             19190
                                                                             19200
      DO 26 M=1,100
      READ (IU1,27,END=7)MNAME(M),NMINO(M),THMIN(M),LKTOM(M),DHMIN(M)
                                                                             19210
     1, MFLAG(M), SIMIN(M)
                                                                             19220
   27 FORMAT (A8,2X,12,3X,3A10,5X,11,9X,A10)
                                                                             19230
                                                                             19240
      NO2=NMINO(M)
      IF (NO2.LE.5) GO TO 29
                                                                             19250
      NO2=5
                                                                             19260
                                                                             19270
   29 READ (IU1,28) (LMIN(M,MO),CMIN(M,MO),MO=NUM,NO2)
                                                                             19280
   28 FORMAT (5(14,A11))
      IF (NMINO(M).LE.5.OR.NUM.EQ.6) GO TO 30
                                                                             19290
      NUM=6
                                                                             19300
      NO2=NMINO(M)
                                                                             19310
                                                                             19320
      GO TO 29
   30 IF (MFLAG(M).EQ.0) GO TO 26
                                                                             19330
   10 READ (IU1,31) (AMIN(M,MO),MO=1,5)
                                                                             19340
   31 FORMAT (5A12)
                                                                             19350
   26 CONTINUE
                                                                             19360
    7 IMINERAL=M-1
                                                                             19370
C
                                                                             19380
C
              READ THERMODYNAMIC DATA OF PHREEQE.
                                                                             19390
C
          NOTE: THE DATA BLOCKS OF PHREEQE DATA CAN BE ARRNAGED
                                                                             19400
C
                 IN ANY ORDER.
                                                                             19410
C
                                                                             19420
                                                                             19430
      CLOSE (UNIT=IU1)
      OPEN (UNIT=IU2,FILE='RATEMOD>PITZ>LATEST>PHRQPITZ.DATA'
                                                                             19440
                                                                             19450
     1.STATUS='OLD')
   48 READ (IU2,11,END=50) KEYWORD
                                                                             19460
   11 FORMAT (A8)
                                                                             19470
C
                                                                             19480
C
           READ IS REPEATED UNTIL A KEYWORD IS FOUND.
                                                                             19490
C
                                                                             19500
      IF (KEYWORD.EQ.SUB(2))GO TO 42
                                                                             19510
      IF (KEYWORD.EQ.SUB(3))GO TO 44
                                                                             19520
      GO TO 48
                                                                             19530
   46 LREAD=LREAD+1
                                                                             19540
      IF (LREAD.NE.2) GO TO 48
                                                                             19550
      CLOSE (UNIT=IU2)
                                                                             19560
      RETURN
                                                                             19570
C
                                                                             19580
```

```
C
          READ SPECIES DATA BLOCK.
                                                                              19590
C
                                                                              19600
   44 DO 80 JL=1,250
                                                                              19610
      READ (IU2,51) NOUSE1
                                                                              19620
                                                                              19630
      IF (NOUSE1.EQ.0)GO TO 46
      READ (IU2,52)NOUSE2,NOUSE3,NOUSE6
                                                                              19640
   51 FORMAT (13)
                                                                              19650
   52 FORMAT (A8,2X,I3,12X,F10.3,//)
                                                                              19660
      IF (NOUSE3.GT.6) READ (22,53)
                                                                              19670
                                                                              19680
   53 FORMAT (1X)
                                                                              19690
      IF (NOUSE1.GT.30)GO TO 80
                                                                              19700
      SPEC(NOUSE1)=NOUSE2
                                                                              19710
      OPV(NOUSE 1) = NOUSE 6
   80 CONTINUE
                                                                              19720
      GO TO 46
                                                                              19730
                                                                              19740
C
С
          READ ELEMENTS DATA BLOCK.
                                                                              19750
                                                                              19760
                                                                              19770
   42 DO 8 JL=1,50
      READ (IU2,9)ICOL1(0), ICOL2(0), ICOL3(0), ICOL4(0)
                                                                              19780
    9 FORMAT (A8,2X,12,3X,F10.0,5X,A8)
                                                                              19790
                                                                              19800
      IF (ICOL2(0).GT.30)GO TO 8
      IF (ICOL2(0).NE.0)GO TO 100
                                                                              19810
                                                                              19820
      JCOL=JL-1
      GO TO 46
                                                                              19830
                                                                              19840
  100 ICOL1(ICOL2(0))=ICOL1(0)
      ICOL2(ICOL2(0)) = ICOL2(0)
                                                                              19850
      ICOL3(ICOL2(0))=ICOL3(0)
                                                                              19860
      ICOL4(ICOL2(0))=ICOL4(0)
                                                                              19870
    8 CONTINUE
                                                                              19880
   50 STOP
                                                                              19890
      ******
C
                                                                              19900
                                                                              19910
      ENTRY LISTM
      *******
C
                                                                              19920
C
                                                                              19930
С
          THIS SUBROUTINE FORMATS AND PRINTS A TABLE OF MASTER
                                                                              19940
C
          SPECIES AND ELEMENTS.
                                                                              19950
С
                                                                              19960
      DO 200 MO=1.3
                                                                              19970
      ICOL1(MO)=NONE
                                                                              19980
      ICOL2(MO)=MO
                                                                              19990
      ICOL3(MO)=0.0
                                                                              20000
      ICOL4(MO)=NONE
                                                                              20010
                                                                              20020
      OPV(MO) = 0.0
  200 CONTINUE
                                                                              20030
      ICOL3(3) = 18.0152
                                                                              20040
      SPEC(1)='H+
                                                                              20050
      SPEC(2)='E-
                                                                              20060
      SPEC(3) = 'H20
                                                                              20070
      WRITE (J,201)
                                                                              20080
  201 FORMAT (/34X, 'INPUT FORMULA', /, 34X, 'CORRESPONDING', 5X, 'MASTER', /
                                                                              20090
     1,1X,'ELEMENTS',5X,'#',9X,'GFW',10X,'TO GFW',9X,'SPECIES',6X,'OPV'
                                                                             20100
     2, /, 1x, 8('-'), 4x, 3('-'), 4x, 10('-'), 4x, 14('-'), 4x, 8('-'), 4x, 5('-')
                                                                             20110
     3,/)
                                                                              20120
                                                                              20130
      DO 203 MO=1,30
      IF (ICOL2(MO).EQ.0)GO TO 203
                                                                              20140
```

```
WRITE(J,202)ICOL1(MO),ICOL2(MO),ICOL3(MO),ICOL4(MO),SPEC(MO)
                                                                          20150
     1.0PV(MO)
                                                                          20160
  203 CONTINUE
                                                                          20170
  202 FORMAT (1X, A8, 4X, I2, 5X, F10, 4, 8X, A8, 6X, A8, 4X, SP, F4, 1, SS)
                                                                          20180
                                                                          20190
      END
                                                                          20200
C
                                                                          20210
      SUBROUTINE REF (ILINE, JOPT, JOPEN)
                                                                          20220
C
                                                                          20230
С
          THIS SUBROUTINE READS CERTAIN NUMBER OF LINES--ACCORDING
                                                                          20240
C
          TO THE VALUE OF ILINE -- FROM THE REFERENCE FILE, PRINTS
                                                                          20250
C
          IT(THEM) ON THE SCREEN, AND, DEPENDING ON THE VALUE OF
                                                                          20260
C
          IOPEN, ASKS A QUESTION CONCERNING THE FATE OF THE LINE(S).
                                                                          20270
C
                                                                          20280
C
          JOPT: 0 = NO PRINT OF LINES
                                                                          20290
C
                 1 = PRINT THE LINES
                                                                          20300
C
                                                                          20310
          JOPEN: 0 = NO QUESTION ASKED
C
                 > 0 = QUESTION ASKED
                                                                          20320
C
                                                                          20330
                                                                          20340
      COMMON /IUNIT/ J
      COMMON /REFF/ JOPTION, IOPEN, JLINE
                                                                          20350
      COMMON /REFF1/ I
                                                                          20360
      CHARACTER *80 JLINE(3), LINE
                                                                          20370
C
                                                                          20380
                                                                          20390
      DO 310 II=1.ILINE
      READ (13, 10, END=99) JLINE(II)
                                                                          20400
                                                                          20410
   10 FORMAT (A80)
      IF (JLINE(II)(1:10).NE.' ')GO TO 311
                                                                          20420
      IF (II.NE.1) GO TO 311
                                                                          20430
      JOPTION=0
                                                                          20440
      RETURN
                                                                          20450
  311 IF (JOPT.EQ.0) GO TO 310
                                                                          20460
                                                                          20470
      WRITE (J,300) JLINE(II)
  300 FORMAT (A80)
                                                                          20480
                                                                          20490
  310 CONTINUE
      IF (JOPEN.EQ.O) RETURN
                                                                          20500
  402 GO TO (303,400,500,600), JOPEN
                                                                          20510
  303 WRITE (J,301)
                                                                          20520
  301 FORMAT ('ENTER OPTION. (1=KEEP, 2=MODIFY, 3=REPLACE)')
                                                                          20530
  305 READ (J.300) LINE
                                                                          20540
      READ (LINE, *, ERR=402) JOPTION
                                                                          20550
      IF (JOPTION.LE.O.OR.JOPTION.GT.3)GO TO 402
                                                                          20560
      IF ((JOPTION.EQ.3).AND.(JOPEN.EQ.2.OR.JOPEN.EQ.4))GO TO 402
                                                                          20570
      RETURN
                                                                          20580
   99 IOPEN=0
                                                                          20590
      RETURN
                                                                          20600
  400 WRITE (J.401)
                                                                          20610
  401 FORMAT ('ENTER OPTION. (1=KEEP, 2=ELIMINATE)')
                                                                          20620
      GO TO 305
                                                                          20630
  500 WRITE (J.501)
                                                                         20640
  501 FORMAT ('ENTER OPTION. (1=KEEP, 2=MODIFY, 3=ELIMINATE)')
                                                                         20650
      GO TO 305
                                                                          20660
  600 WRITE (J.601)
                                                                          20670
  601 FORMAT ('ENTER OPTION. (1=KEEP, 2=REPLACE)')
                                                                         20680
      GO TO 305
                                                                          20690
                                                                          20700
      END
```

```
C
                                                                             20710
      SUBROUTINE SPECL(I)
                                                                             20720
C
                                                                             20730
C
        THIS SUBROUTINE CHECKS FOR SPECIAL CHARACTERS 'EXIT' AND 'LIST'
                                                                             20740
C
                                                                             20750
      COMMON /EE/ EXIT, LIST, LINE, JFLAG
                                                                             20760
      LOGICAL EXIT, LIST
                                                                             20770
      CHARACTER *80 LINE
                                                                             20780
      CHARACTER *4 QUIT(6)
                                                                             20790
      DATA QUIT /'EXIT', 'exit', 'STOP', 'stop', 'QUIT', 'quit'/
                                                                             20800
C
                                                                             20810
      EXIT=.FALSE.
                                                                             20820
      LIST=.FALSE.
                                                                             20830
      IF (I.EQ.O) RETURN
                                                                             20840
      IF ((LINE(1:4).EQ.'LIST'.OR.LINE(1:4).EQ.'list').AND.(I.EQ.2.OR.
                                                                             20850
     11.EQ.3)) LIST=.TRUE.
                                                                             20860
                                                                             20870
      DO 10 N=1.6
      IF (LINE(1:4).EQ.QUIT(N).AND.(I.EQ.1.OR.I.EQ.3)) EXIT=.TRUE.
                                                                             20880
   10 CONTINUE
                                                                             20890
      RETURN
                                                                             20900
      END
                                                                             20910
C
                                                                             20920
      LOGICAL FUNCTION OK()
                                                                             20930
С
                                                                             20940
C
          THIS SUBROUTINE ASKS WHETHER IT IS O.K.
                                                                             20950
C
                                                                             20960
      COMMON /IUNIT/ J
                                                                             20970
      COMMON /PN/ NFLAG
                                                                             20980
      LOGICAL ANSWER, YN
                                                                             20990
C
                                                                             21000
      WRITE (J, 10)
                                                                             21010
   10 FORMAT ('O.K.?')
                                                                             21020
      NFLAG=0
                                                                             21030
      OK=.TRUE.
                                                                             21040
      ANSWER=YN()
                                                                             21050
      IF (ANSWER) RETURN
                                                                             21060
      NFLAG=1
                                                                             21070
      OK = . FALSE .
                                                                             21080
      RETURN
                                                                             21090
      END
                                                                             21100
C
                                                                             21110
C
      THIS SUBROUTINE READS VALUES FROM THE TERMINAL AND CHECKS TO MAKE 21120
C
         SURE THAT IT IS PROPER
                                                                             21130
                                                                             21140
      SUBROUTINE QUESTA (*, J1, CHAR1, L1, STRING, F1, K1, M1)
                                                                             21150
      COMMON /REFF/ JOPTION, IOPEN, JLINE
                                                                             21160
      COMMON /PN/ NFLAG
                                                                             21170
      COMMON /EE/ EXIT, LIST, LINE, JFLAG
                                                                             21180
      COMMON /IUNIT/ N
                                                                             21190
      CHARACTER *(*) STRING
                                                                             21200
      CHARACTER *80 LINE, JLINE(3)
                                                                             21210
      CHARACTER *72 QUESTION
                                                                             21220
      CHARACTER *40 FMT
                                                                             21230
      CHARACTER *16 CHAR, CHAR1, CHAR2
                                                                             21240
      CHARACTER *4 F, F1, F2, FF
                                                                             21250
      CHARACTER *2 FO(16)
                                                                             21260
```

```
LOGICAL EXIT, LIST, NONB
                                                                            21270
      DATA FO/'1 ','2 ','3 ','4 ','5 ','6 ','7 ','8 ','9 ','10','11'
                                                                            21280
     1, '12', '13', '14', '15', '16' /
                                                                            21290
      DATA QUESTION /'KEEP THE OLD VALUE? (HIT <RETURN> IF YOU DO; IF NO 21300
     1T. REENTER THE DATA)'/
                                                                            21310
C
                                                                            21320
C
         K=0 ==> STRING
                                                                            21330
C
         K=1 \Longrightarrow REAL
                                                                            21340
Č
         K=2 ==> INTEGER
                                                                            21350
C
                                                                            21360
      FF=F1
                                                                            21370
      IF (F1.EQ.'A80') FF='/A80'
                                                                            21380
      F1=FF
                                                                            21390
      J=J1
                                                                            21400
      CHAR=CHAR1
                                                                            21410
      F=F1
                                                                            21420
      K = K1
                                                                            21430
      L=L1
                                                                            21440
      M=M1
                                                                            21450
      GO TO 100
                                                                            21460
C
                                                                            21470
      ENTRY QUESTB (*, J2, CHAR2, L2, IVAL, F2, IMIN, IMAX, M2)
                                                                            21480
      ****************
C
                                                                            21490
      K=2
                                                                            21500
      J=J2
                                                                            21510
      CHAR=CHAR2
                                                                            21520
      F=F2
                                                                            21530
      L=L2
                                                                            21540
      M=M2
                                                                            21550
C
                                                                            21560
  100 IF (J.GT.O.AND.J.LT.10) I 1
                                                                            21570
      IF (J.GE. 10. AND. J.LT. 100) I=2
                                                                            21580
      IF (J.GE.100) I=3
                                                                            21590
      IF (NFLAG.GT.O.OR.JOPTION.EQ.2) GO TO 30
                                                                            21600
      IF (J.GT.O) GO TO 10
                                                                            21610
      FMT='(/,''INPUT '',A'//FO(L)//')'
                                                                            21620
      WRITE (N.FMT) CHAR
                                                                            21630
      GO TO 300
                                                                            21640
   10 FMT='(/,''INPUT '',A'//FO(L)//',''('',I'//FO(I)//','')'')'
                                                                            21650
      WRITE (N,FMT) CHAR,J
                                                                            21660
      GO TO 300
                                                                            21670
   30 IF (J.GT.O) GO TO 40
                                                                            21680
      FMT='(/,''OLD '',A'//FO(L)//',''='','//F//',/,A72)'
                                                                            21690
      IF (K.EQ.2) WRITE (N.FMT) CHAR, IVAL, QUESTION
                                                                            21700
      IF (K.NE.2) WRITE (N,FMT) CHAR, STRING, QUESTION
                                                                            21710
      GO TO 300
                                                                            21720
   40 FMT='(/,''OLD '',A'//FO(L)//',''('',I'//FO(I)//','')='','//F//',
                                                                            21730
     1/,A72)'
                                                                            21740
      IF (K.EQ.2) WRITE (N,FMT) CHAR, J, IVAL, QUESTION
                                                                            21750
      IF (K.NE.2) WRITE (N.FMT) CHAR, J. STRING, QUESTION
                                                                            21760
C
                                                                            21770
C
      READ RESPONSE
                                                                            21780
                                                                            21790
                                                                            21800
  300 JFLAG=0
      READ (N, 105) LINE
                                                                            21810
  105 FORMAT(A80)
                                                                            21820
```

```
C
                                                                            21830
C
          JFLAG=O ---> PROPER ENTRY
                                                                            21840
C
          JFLAG=1 ---> EXPLANATION IS ASKED
                                                                            21850
C
          JFLAG=2 ---> A NULL ANSWER
                                                                            21860
Ċ
          JFLAG=3 ---> ANSWER OF WRONG TYPE
                                                                            21870
С
          JFLAG=4 ---> SPECIAL CHARACTERS
                                                                            21880
                                                                            21890
      IF (LINE(1:1).NE.'') GO TO 110
                                                                            21900
      JFLAG=2
                                                                            21910
      IF (K.EQ.2) IVALO=IVAL
                                                                            21920
  110 IF (LINE(1:1).EQ.'?') JFLAG=1
                                                                            21930
      CALL SPECL (M)
                                                                            21940
      IF (EXIT.OR.LIST) JFLAG=4
                                                                            21950
      IF (JFLAG.NE.O) GO TO 200
                                                                            21960
      GO TO (140, 150, 120), K+1
                                                                            21970
  140 STRING=LINE
                                                                            21980
      RETURN
                                                                            21990
  120 READ (LINE, *, ERR= 130) IVALO
                                                                            22000
      GO TO 170
                                                                            22010
  150 READ (LINE, *, ERR= 130) G
                                                                            22020
                                                                            22030
C
      MAKE SURE THAT DECIMAL POINT IS PRESENT
                                                                            22040
C
                                                                            22050
      NONB=.FALSE.
                                                                            22060
      DO 155 I2=1.80
                                                                            22070
      IF (LINE(12:12).NE.'') NONB=.TRUE.
                                                                            22080
      IF (NONB. AND.LINE(12:12).EQ.' ') GO TO 130
                                                                            22090
      IF (LINE(I2:I2).EQ.'.') GO TO 156
                                                                            22100
  155 CONTINUE
                                                                            22110
      GO TO 130
                                                                            22120
  156 STRING=LINE
                                                                            22130
      GO TO 200
                                                                            22140
C
                                                                            22150
  130 JFLAG=3
                                                                            22160
  200 IF (JFLAG.EQ.2.AND.(NFLAG.NE.O.OR.JOPTION.EQ.2)) GO TO 170
                                                                            22170
      IF (JFLAG.EQ.4) RETURN
                                                                            22 180
      IF (JFLAG.NE.O) RETURN 1
                                                                            22190
  170 IF (K.NE.2) RETURN
                                                                            22200
      IF (IMAX.GT.IMIN) GO TO 180
                                                                            22210
      GO TO 190
                                                                            22220
  180 IF (IVALO.GT.IMAX.OR.IVALO.LT.IMIN) RETURN 1
                                                                            22230
  190 IVAL=IVALO
                                                                            22240
      RETURN
                                                                            22250
      END
                                                                            22260
C
                                                                            22270
      LOGICAL FUNCTION YN()
                                                                            22280
C
                                                                            22290
C
           THIS FUNCTION CHECKS FOR YES OR NO ANSWER
                                                                            22300
C
                                                                            22310
      CHARACTER *1 YESNO
                                                                            22320
      COMMON / IUNIT/ J
                                                                            22330
C
                                                                            22340
    5 READ (J,10) YESNO
                                                                            22350
   10 FORMAT (A1)
                                                                            22360
      YN=.FALSE.
                                                                            22370
      IF (YESNO.EQ.'Y'.OR.YESNO.EQ.'y') GO TO 20
                                                                            22380
```

```
IF (YESNO.EQ.'N'.OR.YESNO.EQ.'n') RETURN
                                                                          22390
                                                                          22400
      WRITE (J.30)
   30 FORMAT ('PLEASE ANSWER ''Y'' OR ''N''.')
                                                                          22410
      GO TO 5
                                                                          22420
   20 YN=.TRUE.
                                                                          22430
      RETURN
                                                                          22440
      END
                                                                          22450
C
                                                                          22460
                                                                          22470
      SUBROUTINE OPEN(ITIME)
C
                                                                          22480
C
          THIS SUBROUTINE GIVES THE USER A CHOICE OF CHOOSING A
                                                                         22490
          REFERENCE FILE OR NOT TO USE IT AT ALL. IF THE
                                                                          22500
          REFERENCE FILE IS DESIRED, IT OPENS THE FILE AND
C
                                                                          22510
          POSITION THE POINTER SO THAT THE PROGRAM CAN USE IT;
                                                                         22520
          IF REFERENCE FILE IS NOT WANTED, IT SETS IOPEN TO ZERO
C
                                                                          22530
C
          AND RETURN TO 'MAIN.
                                                                          22540
C
                                                                          22550
      COMMON /REFF/ JOPTION, IOPEN, JLINE
                                                                          22560
      COMMON /IUNIT/ J
                                                                          22570
      CHARACTER *36 TREAD
                                                                          22580
      CHARACTER *80 LINE, JLINE(3)
                                                                          22590
      SAVE TREAD, KOPEN
                                                                          22600
      LOGICAL YN
                                                                          22610
C
                                                                          22620
      ITIME=ITIME+1
                                                                          22630
      IF (ITIME.EQ.1.OR.KOPEN.EQ.0)GO TO 100
                                                                          22640
  120 WRITE (J,110)
                                                                          22650
  110 FORMAT (/, 'DO YOU WISH TO USE THE SAME REFERENCE FILE?')
                                                                          22660
      IF (.NOT.YN()) GO TO 100
                                                                          22670
      CLOSE (UNIT=13)
                                                                          22680
      GO TO 25
                                                                          22690
  100 WRITE (J, 10)
                                                                          22700
   10 FORMAT (/, 'ENTER REFERENCE FILE NAME: (HIT <CR> TO OMIT)')
                                                                          22710
      READ (J,20) TREAD
                                                                          22720
   20 FORMAT (A36)
                                                                          22730
      IF (TREAD(1:1).NE.'')GO TO 25
                                                                          22740
      IOPEN=0
                                                                          22750
      GO TO 30
                                                                          22760
   25 OPEN (UNIT=13,FILE=TREAD,STATUS='OLD')
                                                                          22770
      IOPEN=1
                                                                          22780
   30 KOPEN=IOPEN
                                                                          22790
      RETURN
                                                                          22800
                                                                          22810
      END
```



```
6.00 -4.362
ANHYDRIT
          2
                                                1
         1.000 16
                     1.000
  4
422.950
                       -18431.
                                   -147.708
          0.0
          2
                    4.00
                           -8.220
                                                1
ARAGONIT
 15 1.0
                 4 1.0
-171.8607
           -.077993
                       2903.293
                                   71.595
ARCANITE
          2
                    6.00 - 1.776
                                                1
  7
         2.000
                16
                       1.000
2.823
                       -1371.2
           0.0
          3
                    0.00
BISCHOFI
                           4.455
                                                1
                        2.000 3
          1.000
                 14
  5
                                       6.000
3.524
           0.0
                       277.6
          4
                   12.00 -2.347
BLOEDITE
                                                0
         2.000
                        1.000 16
                                       2.000
                                               3
                                                     4,000
  6
BRUCITE
                    0.00 -10.884.85
          2
          1.000
                        2.000
  5
                31
BURKEITE
                   16.00 -.772
                                                0
          3
                      1.000 16
  6
          6.000
                                       2.000
                 15
CALCITE
                    4.00 -8.406
          2
                                                 1
  15 1.0
                 4 1.0
                       2839.319
-171.8329
           -.077993
                                   71.595
                    0.00 4.330
                                                0
CARNALLI
          1.000
                                                     6.000
  7
                     1.000 14
                                       3.000
                                               3
DOLOMITE
          3
                    8.00 -17.083 -9.436
                                                0
  4 1.0
                 5 1.0
                        15 2.0
EPSOMITE
           3
                    6.00 - 1.881
                                                 1
                       1.000 3
  5
          1.000
                 16
                                       7.000
1.718
           0.0
                       -1073.
          4
                    8.00 -9.421
GAYLUSSI
                                                0
                                                     5.000
          1,000
                                               3
  4
                        2.000 15
                                       2.000
GLASERIT
                   24.00 -3.803
          3
                                                0
  6
          1.000
                 7
                        3.000 16
                                       2,000
GLAUBERI
          3
                   12.00 -5.245
                                                0
          2.000
                        1.000 16
                                       2,000
  6
GYPSUM
          3
                    6.00 -4.581
                                                 1
  4 1.0
                                3 2.0
                 16 1.0
90.318
                       -4213.
                                   -32.641
           0.0
HALITE
           2
                    0.00 1.570
                                                 1
                14
  6
          1.000
                       1.000
-713.4616
           -.1201241
                       37302.21
                                   262.4583
                                               -2106915.
           3
                    6.00 -1.635
                                                1
HEXAHYDR
          1.000
                 16
                        1.000 3
                                       6.000
   5
-62.666
           0.0
                       1828.
                                   22.187
                                                0
           5
                    6.00 -0.193
KAINITE
          1.000
                        1.000 14
                                       1.000
                                              16
                                                      1.000
                                                             3
                                                                    3.000
  7
KALICINI
          3
                    4.00 -10.058
                                                0
                        1.000 15
                                       1.000
  7
          1.000
                  1
KIESERIT
                    6.00 -0.123
                                                0
          3
                        1.000 3
                                       1,000
   5
          1.000
                 16
LABILE S
          4
                    18.00
                          -5.672
                                                0
                                                     2.000
          4.000
                        1.000 16
                                       3.000
                                               3
  6
LEONHARD
          3
                    6.00 - 0.887
   5
          1.000
                 16
                    1.000 3
                                       4.000
                                                0
LEONITE
          4
                    12.00 -3.979
```

7	2.000	5	1.000 16	2.000	3	4.000		
MAGNESIT	2		4.00 -7.834	-6.169	0			
5	1.000	15	1.000					
MIRABILI	3		6.00-1.214		1			
6			1.000 3					
-3862.234	-1.1	9856	5 93713.54	1577.756				
MISENITE	3		42.00 -10.806		0			
7	8.000	1	6.000 16	7.000				
NAHCOLIT	3		4.00 -10.742		0			
6	1.000	1	1.000 15	1.000				
NATRON	3		4.00 -0.825		0			
6	2.000	15	1.000 3	10.000				
MECUIERO	2		11 00 E 167		0			
5	1.000	15	1.000 3	3.000				
PCO2	1		4.0 -1.468	-4.776	1			
3 5 1. 0								
108.3865	0.01	9850	076 -6919.53	-40.45154	669	365. 0		
PENTAHYD	3		6.00 -1.285		0			
5	1.000	16	1.000 3 8.00 -9.234	5.000				
PIRSSONI	4		8.00 -9.234		0			
6	2.000	4	1.000 15	2.000	3	2.000		
POLYHALI			24.00 -13.744		0			
7	2.000	5	1.000 4	2.000	16	4.000	3	2.000
	2		0.00 -5.190		0			
	1.000		2.000					
	4		12.00 -4.328		0			
	2.000	5	1.000 16	2.000	3	6.000		
SYLVITE	2		0.00 .900		1			
7		14	1.000					
	0.0		-919.55					
	4		12.00 -7.448		0			
7	2.000	4	1.000 16	2.000	3	1.000		
TRONA	4		8.00 -11.384		0			
6	3.000	1	1.000 15	2.000	3	2.000		

Attachment G. -- Example of use of the interactive input program

PITZINPT to construct the input file for

test problem 3

```
ENTER OUTPUT FILE NAME
TEST.3
ENTER REFERENCE FILE NAME: (HIT (CR) TO OMIT)
INPUT THE TITLE
Test Problem 3: Find the anhydrite-gypsum phase boundary with NaCl addition.
Test Problem 3: Find the anhydrite-gypsum phase boundary with NaCl addition.
O.K.?
Y
INPUT IOPT(1)
INPUT IOPT(2)
INPUT IOPT(3)
INPUT 10PT(4)
INPUT IOPT(7)
0
INPUT IOPT(8)
INPUT IOPT(9)
INPUT IOPT(10)
INPUT NCOMPS
2
0060020000 0 2
                    0.0
O.K.?
******
KEYWORD DATA BLOCKS
***********
```

ENTER KEYWORD. SOLUTION 1

```
-----
SOLUTION
_____
INPUT HEAD
Pure water
O.K.?
Y
0 0 0
          7.0
                   4.0 25.0
                                   1.0
O.K.?
Y
KEYWORD DATA BLOCKS
******
ENTER KEYWORD.
MINERALS
_____
MINERALS
PRE-CONSTRUCTED MINERAL DATA ARE AVAILABLE.
DO YOU WISH TO HAVE ANY OF THEM?
Y
                                                        5 BLOEDITE
                                          4 BISCHOFI
   1 ANHYDRIT
                2 ARAGONIT
                              3 ARCANITE
                7 BURKEITE
                                                        10 DOLOMITE
  6 BRUCITE
                             8 CALCITE
                                           9 CARNALLI
  11 EPSOMITE
               12 GAYLUSSI
                             13 GLASERIT
                                          14 GLAUBERI
                                                        15 GYPSUM
  16 HALITE
               17 HEXAHYDR
                             18 KAINITE
                                          19 KALICINI
                                                        20 KIESERIT
 21 LABILE S
               22 LEONHARD
                             23 LEONITE
                                          24 MAGNESIT
                                                        25 MIRABILI
  26 MISENITE
               27 NAHCOLIT
                             28 NATRON
                                          29 NESQUEHO
                                                        30 PC02
                                                        35 SCHOENIT
  31 PENTAHYD
               32 PIRSSONI
                             33 POLYHALI
                                          34 PORTLAND
  36 SYLVITE
               37 SYNGENIT
                             38 TRONA
ENTER THE INDEX NUMBER OF MINERAL. (TYPE <STOP> TO EXIT)
1
ANHYDRIT
          2
                    6.00 -4.362
                                                1
          1.000 16
                       1.000
  4
422.950
           0.0
                       -18431.
                                   -147.708
O.K.?
```

ENTER THE INDEX NUMBER OF MINERAL. (TYPE <STOP> TO EXIT)

Y

```
15
```

```
3 6.00 -4.581
16 1.0 3 2.0
GYPSUM
                                             1
   4 1.0 16
.318 0.0
 90.318
                   -4213.
                               -32.641
 O.K.?
 ENTER THE INDEX NUMBER OF MINERAL. (TYPE <STOP> TO EXIT)
 STOP
 MORE MINERALS TO BE TYPED IN FROM THE TERMINAL?
N
 *******
 KEYWORD DATA BLOCKS
- ************
ENTER KEYWORD.
 REACTION
 REACTION
 -----
 INPUT LREAC(1)
 INPUT CREAC(1)
 INPUT THMEAN(1)
 0.
 INPUT LREAC(2)
 14
 INPUT CREAC(2)
 1.
 INPUT THMEAN(2)
 0.
   61.
         0. 141. 0.
 O.K.?
 KEYWORD DATA BLOCKS
 ******
```